Cleaning the HPI for states and for msa

# add 'city, state, fips, year, quarter, hpi, error' as column titles

a <- read.csv("data/fhfa-house-price-index/Original/1q09hpi-cbsa-Ver2.csv")
head(a)
##   Abilene TX X10180 X1975 X1 NA. NA..1
## 1 Abilene TX  10180  1975  2  NA    NA
## 2 Abilene TX  10180  1975  3  NA    NA
## 3 Abilene TX  10180  1975  4  NA    NA
## 4 Abilene TX  10180  1976  1  NA    NA
## 5 Abilene TX  10180  1976  2  NA    NA
## 6 Abilene TX  10180  1976  3  NA    NA
tail(a)
##       Abilene TX X10180 X1975 X1   NA. NA..1
## 52739    Yuma AZ  49740  2007  4 230.1  3.49
## 52740    Yuma AZ  49740  2008  1 224.8  3.35
## 52741    Yuma AZ  49740  2008  2 220.7  3.45
## 52742    Yuma AZ  49740  2008  3 214.6  3.89
## 52743    Yuma AZ  49740  2008  4 214.5  4.11
## 52744    Yuma AZ  49740  2009  1 208.1  3.16
names(a) <- c("city", "state", "fips_msa", "year", "quarter", "hpi", "error")
new <- a[a[, "year"] %in% 2000:2009, ]
write.table(new, "fhfa-house-price-index-msa.csv", sep = ",", row = FALSE)
head(new)
##        city state fips_msa year quarter   hpi error
## 100 Abilene    TX    10180 2000       1 112.1  2.63
## 101 Abilene    TX    10180 2000       2 112.5  2.44
## 102 Abilene    TX    10180 2000       3 114.1  2.47
## 103 Abilene    TX    10180 2000       4 116.7  2.70
## 104 Abilene    TX    10180 2001       1 116.8  2.64
## 105 Abilene    TX    10180 2001       2 117.7  2.55
tail(new)
##       city state fips_msa year quarter   hpi error
## 52739 Yuma    AZ    49740 2007       4 230.1  3.49
## 52740 Yuma    AZ    49740 2008       1 224.8  3.35
## 52741 Yuma    AZ    49740 2008       2 220.7  3.45
## 52742 Yuma    AZ    49740 2008       3 214.6  3.89
## 52743 Yuma    AZ    49740 2008       4 214.5  4.11
## 52744 Yuma    AZ    49740 2009       1 208.1  3.16