load("~/Dropbox/Projeto_tese/C4 Doenca e dano/META/data/master_file.RData")
load("~/Dropbox/Projeto_tese/C4 Doenca e dano/META/data/summary_dat.RData")
load("~/Dropbox/Projeto_tese/C4 Doenca e dano/META/data/4_correlations.RData")

Dataset

head(long)
##   study year state    location cultivar            fungic         chemG bk
## 1     1 2012    MT Campo Verde   TMG803             CHECK             0  4
## 2     1 2012    MT Campo Verde   TMG803               CZM           MBC  4
## 3     1 2012    MT Campo Verde   TMG803       CZM_CM_TEBU  DMIs_MBC_QoI  4
## 4     1 2012    MT Campo Verde   TMG803            CZM_LS    MBC_LignoS  4
## 5     1 2012    MT Campo Verde   TMG803 EPO_FLUX_PYRA_0.8 DMIs_QoI_SDHI  4
## 6     1 2012    MT Campo Verde   TMG803   EPO_FLUX_PYRA_1 DMIs_QoI_SDHI  4
##   rep sev yield
## 1   1  45  2642
## 2   1  55  2918
## 3   1  35  2414
## 4   1  40  2708
## 5   1  25  2684
## 6   1  20  2967

Linear model regression - parameteres b0 and b1

long_gp <- groupedData(yield ~ sev | study, data = na.omit(long), order = FALSE)
fit <- lmList(yield ~ sev | study, data=long_gp)

# First parameter: est + sd 
b0 = as.data.frame(summary(fit)$coefficients[,,1][,1:2]) %>% 
  add_rownames(var = "id")%>%
  transmute(`study` = as.integer(id), Coef_b0=Estimate, SE_b0=`Std. Error`) 

# Second parameter: est + sd
b1 = as.data.frame(summary(fit)$coefficients[,,2][,1:2])%>% 
  add_rownames(var = "id")%>%
  transmute(`study`= as.integer(id), Coef_b1=Estimate, SE_b1=`Std. Error`) 

reg = left_join(b0, b1, by = 'study') %>%
  right_join(by_study, by = c("study"))  %>%
  mutate(study = factor(study)) %>% 
  select(study, year, state, cultivar, Coef_b0:SE_b1)

# Discarding studies with sev ranges < = 10% severity
(reg_red = subset(reg, !study %in% as.numeric(to_discard$study)))
## Source: local data frame [34 x 8]
## 
##     study  year  state        cultivar  Coef_b0     SE_b0    Coef_b1
##    (fctr) (int) (fctr)          (fctr)    (dbl)     (dbl)      (dbl)
## 1       1  2012     MT          TMG803 2898.754 138.20354  -7.584689
## 2       2  2012     MT          TMG803 3927.619 141.38724 -24.469702
## 3       3  2012     MT          TMG803 3251.294 168.21468 -16.095129
## 4       4  2012     MS        5G830_RR 3445.393  67.35849  -4.360786
## 5       5  2012     MS BMX_Potencia_RR 4218.295  86.50103  -9.249662
## 6       6  2012     MT          TMG803 3610.224  83.71836  -7.227121
## 7       7  2012     GO        M8336_RR 3849.029 197.06981 -12.180597
## 8       8  2013     MT      TMG1179_RR 3877.356 110.35541  -3.623984
## 9       9  2013     MT        5G830_RR 3735.816 117.29455 -22.882334
## 10     10  2013     GO   BRSGO_9160_RR 4341.308 176.65041 -37.492322
## ..    ...   ...    ...             ...      ...       ...        ...
## Variables not shown: SE_b1 (dbl)

Effect size of reggression coeficcients B0 e B1

B0

b0.rand = rma.uni(Coef_b0, sei = SE_b0, method="ML", data= reg_red)
b0.rand
## 
## Random-Effects Model (k = 34; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of total heterogeneity): 457469.4430 (SE = 114643.2355)
## tau (square root of estimated tau^2 value):      676.3649
## I^2 (total heterogeneity / total variability):   98.27%
## H^2 (total variability / sampling variability):  57.93
## 
## Test for Heterogeneity: 
## Q(df = 33) = 2197.9272, p-val < .0001
## 
## Model Results:
## 
##  estimate        se      zval      pval     ci.lb     ci.ub           
## 3557.3172  118.0013   30.1464    <.0001 3326.0389 3788.5954       *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(b0.rand , digits = 2)
## 
##         estimate     ci.lb     ci.ub
## tau^2  457469.44 300449.42 821573.74
## tau       676.36    548.13    906.41
## I^2(%)     98.27     97.40     99.03
## H^2        57.93     38.39    103.24
#forest (b0.rand)

B1

b1.rand = rma.uni(Coef_b1, sei = SE_b1, method="ML", data= reg_red)
b1.rand
## 
## Random-Effects Model (k = 34; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of total heterogeneity): 144.5508 (SE = 43.0165)
## tau (square root of estimated tau^2 value):      12.0229
## I^2 (total heterogeneity / total variability):   87.05%
## H^2 (total variability / sampling variability):  7.72
## 
## Test for Heterogeneity: 
## Q(df = 33) = 194.4615, p-val < .0001
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
## -17.8517   2.3011  -7.7579   <.0001 -22.3617 -13.3416      *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(b1.rand , digits = 2)
## 
##        estimate ci.lb  ci.ub
## tau^2    144.55 95.85 356.62
## tau       12.02  9.79  18.88
## I^2(%)    87.05 81.67  94.31
## H^2        7.72  5.46  17.58
#forest (b1.rand)

Cultivar Moderator- to classify tolerance levels

## Warning in rma.uni(Coef_b1, sei = SE_b1, mods = ~cultivar - 1, method =
## "ML", : Redundant predictors dropped from the model.
##           est       low          up        cultivar    Toler
## 1  -13.426458 -23.47573  -3.3771905        5G830_RR 2_Medium
## 2  -32.195475 -59.90792  -4.4830260    AS_3730_IPRO    3_Low
## 3  -28.389593 -45.59419 -11.1849920    BMX_Ativa_RR    3_Low
## 4   -8.916045 -16.89049  -0.9415982 BMX_Potencia_RR   1_High
## 5  -28.631467 -54.31383  -2.9491079   BRSGO_8151_RR    3_Low
## 6  -30.702977 -41.34798 -20.0579758   BRSGO_9160_RR    3_Low
## 7  -12.180597 -29.27227   4.9110733        M8336_RR 2_Medium
## 8  -28.182773 -36.15697 -20.2085775        M9144_RR    3_Low
## 9  -19.139126 -31.40411  -6.8741380      NA_5909_RG 2_Medium
## 10 -37.341122 -55.21267 -19.4695700      Syn1180_RR    3_Low
## 11 -29.150430 -48.04355 -10.2573068      TMG1175_RR    3_Low
## 12  -4.731433 -14.91747   5.4546023      TMG1179_RR   1_High
## 13  -1.806598 -11.28768   7.6744828      TMG1180_RR   1_High
## 14 -14.215373 -30.77060   2.3398531      TMG7188_RR 2_Medium
## 15 -13.739801 -19.93469  -7.5449079          TMG803 2_Medium

## Warning in left_join_impl(x, y, by$x, by$y): joining factors with different
## levels, coercing to character vector

State as qualitative moderator

B0

( rma.uni(Coef_b0,  sei = SE_b0, mods =  ~ factor(state),  method = "ML", data = reg1) )
## 
## Mixed-Effects Model (k = 34; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     405180.3940 (SE = 101908.6174)
## tau (square root of estimated tau^2 value):             636.5378
## I^2 (residual heterogeneity / unaccounted variability): 98.02%
## H^2 (unaccounted variability / sampling variability):   50.52
## R^2 (amount of heterogeneity accounted for):            11.43%
## 
## Test for Residual Heterogeneity: 
## QE(df = 29) = 1922.1960, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2,3,4,5): 
## QM(df = 4) = 4.4486, p-val = 0.3487
## 
## Model Results:
## 
##                   estimate        se     zval    pval       ci.lb
## intrcpt          3920.9004  399.6010   9.8120  <.0001   3137.6968
## factor(state)GO  -283.6681  460.6897  -0.6157  0.5381  -1186.6033
## factor(state)MS   -29.8738  477.6968  -0.0625  0.9501   -966.1423
## factor(state)MT  -571.9353  432.9380  -1.3211  0.1865  -1420.4782
## factor(state)PR  -616.2523  604.8217  -1.0189  0.3083  -1801.6811
##                      ci.ub     
## intrcpt          4704.1040  ***
## factor(state)GO   619.2671     
## factor(state)MS   906.3947     
## factor(state)MT   276.6077     
## factor(state)PR   569.1765     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
b0.state = rma.uni(Coef_b0,  sei = SE_b0, mods =  ~ factor(state)-1,  method = "ML", data = reg1) 

##tab_b0.state = data.frame (est = b0.state$b, 
#                     low = b0.state$ci.lb, 
#                     up = b0.state$ci.ub)
#tab_b0.state

B1

( rma.uni(Coef_b1,  sei = SE_b1, mods =  ~ factor(state),  method = "ML", data = reg1) )
## 
## Mixed-Effects Model (k = 34; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     62.9366 (SE = 22.1577)
## tau (square root of estimated tau^2 value):             7.9333
## I^2 (residual heterogeneity / unaccounted variability): 73.74%
## H^2 (unaccounted variability / sampling variability):   3.81
## R^2 (amount of heterogeneity accounted for):            56.46%
## 
## Test for Residual Heterogeneity: 
## QE(df = 29) = 114.4418, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2,3,4,5): 
## QM(df = 4) = 25.1822, p-val < .0001
## 
## Model Results:
## 
##                  estimate      se     zval    pval     ci.lb     ci.ub
## intrcpt          -33.5566  6.0045  -5.5886  <.0001  -45.3251  -21.7880
## factor(state)GO    4.8279  7.1632   0.6740  0.5003   -9.2117   18.8674
## factor(state)MS   23.9385  7.1641   3.3414  0.0008    9.8971   37.9799
## factor(state)MT   21.6364  6.4590   3.3498  0.0008    8.9770   34.2958
## factor(state)PR   12.2505  8.8117   1.3903  0.1644   -5.0200   29.5210
##                     
## intrcpt          ***
## factor(state)GO     
## factor(state)MS  ***
## factor(state)MT  ***
## factor(state)PR     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
b1.state = rma.uni(Coef_b1,  sei = SE_b1, mods = ~ factor(state)-1,  method = "ML", data = reg1) 

tab_b1.state = data.frame (est = b1.state$b, 
                     low = b1.state$ci.lb, 
                     up = b1.state$ci.ub)
tab_b1.state
##                        est       low         up
## factor(state)TO -33.556574 -45.32512 -21.788027
## factor(state)GO -28.728711 -36.38441 -21.073008
## factor(state)MS  -9.618057 -17.27719  -1.958928
## factor(state)MT -11.920143 -16.58513  -7.255156
## factor(state)PR -21.306058 -33.94616  -8.665955

Relative yield

(coef(b1.state)/coef(b0.state))*100
## factor(state)TO factor(state)GO factor(state)MS factor(state)MT 
##      -0.8558385      -0.7898509      -0.2471856      -0.3559351 
## factor(state)PR 
##      -0.6447300

Cultivar Tolerance as qualitative moderator

B0

( rma.uni(Coef_b0,  sei = SE_b0, mods =  ~ factor(Toler),  method = "ML", data = reg1) )
## 
## Mixed-Effects Model (k = 34; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     451157.7755 (SE = 113106.4858)
## tau (square root of estimated tau^2 value):             671.6828
## I^2 (residual heterogeneity / unaccounted variability): 98.21%
## H^2 (unaccounted variability / sampling variability):   55.79
## R^2 (amount of heterogeneity accounted for):            1.38%
## 
## Test for Residual Heterogeneity: 
## QE(df = 31) = 1990.5169, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2,3): 
## QM(df = 2) = 0.3748, p-val = 0.8291
## 
## Model Results:
## 
##                         estimate        se     zval    pval      ci.lb
## intrcpt                3658.4923  225.7345  16.2071  <.0001  3216.0608
## factor(Toler)2_Medium   -94.2000  299.4422  -0.3146  0.7531  -681.0960
## factor(Toler)3_Low     -180.6478  295.8765  -0.6106  0.5415  -760.5551
##                            ci.ub     
## intrcpt                4100.9238  ***
## factor(Toler)2_Medium   492.6960     
## factor(Toler)3_Low      399.2594     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
b0.Tol = rma.uni(Coef_b0,  sei = SE_b0, mods =  ~ factor(Toler)-1,  method = "ML", data = reg1) 

#tab_b0.Tol = data.frame (est = b0.Tol$b, 
#                     low = b0.Tol$ci.lb, 
#                     up = b0.Tol$ci.ub)
#tab_b0.Tol

B1

( rma.uni(Coef_b1,  sei = SE_b1, mods =  ~ Toler,  method = "ML", data = reg1) )
## 
## Mixed-Effects Model (k = 34; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     48.9769 (SE = 18.4687)
## tau (square root of estimated tau^2 value):             6.9983
## I^2 (residual heterogeneity / unaccounted variability): 68.89%
## H^2 (unaccounted variability / sampling variability):   3.21
## R^2 (amount of heterogeneity accounted for):            66.12%
## 
## Test for Residual Heterogeneity: 
## QE(df = 31) = 110.2189, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2,3): 
## QM(df = 2) = 39.5913, p-val < .0001
## 
## Model Results:
## 
##                estimate      se     zval    pval     ci.lb     ci.ub     
## intrcpt         -5.5927  2.8147  -1.9870  0.0469  -11.1093   -0.0761    *
## Toler2_Medium   -8.8279  3.7081  -2.3807  0.0173  -16.0956   -1.5601    *
## Toler3_Low     -24.4633  3.9538  -6.1873  <.0001  -32.2126  -16.7140  ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
b1.Tol = rma.uni(Coef_b1,  sei = SE_b1, mods = ~ factor(Toler)-1,  method = "ML", data = reg1) 

tab_b1.Tol = data.frame (est = b1.Tol$b, 
                     low = b1.Tol$ci.lb, 
                     up = b1.Tol$ci.ub)
tab_b1.Tol
##                              est       low           up
## factor(Toler)1_High    -5.592727 -11.10934  -0.07611351
## factor(Toler)2_Medium -14.420597 -19.15206  -9.68913163
## factor(Toler)3_Low    -30.056018 -35.49834 -24.61369673

Relative yield

(coef(b1.Tol)/coef(b0.Tol))*100
##   factor(Toler)1_High factor(Toler)2_Medium    factor(Toler)3_Low 
##            -0.1528697            -0.4045852            -0.8642140

Dataset for correlations

r_study1 = left_join(r_study, select(tab_cv, cultivar, Toler), by = "cultivar")  
## Warning in left_join_impl(x, y, by$x, by$y): joining factors with different
## levels, coercing to character vector
r_red = subset(r_study1,!study %in% to_discard$study) #%>% filter(!r>0)
levels(r_study1$state)[c(1,6)] <- "TO"

print(tbl_df(r_red), n=40) 
## Source: local data frame [34 x 12]
## 
##    study  year     r pairs      z    Vz  state        cultivar Dis_level
##    (dbl) (dbl) (dbl) (int)  (dbl) (dbl) (fctr)           (chr)    (fctr)
## 1      1  2012 -0.18    36 -0.182 0.030     MT          TMG803     3High
## 2      2  2012 -0.52    36 -0.576 0.030     MT          TMG803   2Medium
## 3      3  2012 -0.35    36 -0.365 0.030     MT          TMG803     3High
## 4      4  2012 -0.19    36 -0.192 0.030     MS        5G830_RR   2Medium
## 5      5  2012 -0.19    45 -0.192 0.024     MS BMX_Potencia_RR   2Medium
## 6      6  2012 -0.49    36 -0.536 0.030     MT          TMG803     3High
## 7      7  2012 -0.30    36 -0.310 0.030     GO        M8336_RR     3High
## 8      8  2013 -0.13    40 -0.131 0.027     MT      TMG1179_RR   2Medium
## 9      9  2013 -0.78    40 -1.045 0.027     MT        5G830_RR     3High
## 10    10  2013 -0.78    40 -1.045 0.027     GO   BRSGO_9160_RR     3High
## 11    11  2013 -0.63    40 -0.741 0.027     PR BMX_Potencia_RR     3High
## 12    12  2013 -0.39    40 -0.412 0.027     GO   BRSGO_9160_RR   2Medium
## 13    13  2013 -0.74    40 -0.950 0.027     GO      Syn1180_RR   2Medium
## 14    14  2013 -0.34    40 -0.354 0.027     MT      TMG7188_RR      1Low
## 15    15  2014 -0.55    32 -0.618 0.034     MS      NA_5909_RG   2Medium
## 16    16  2014 -0.32    36 -0.332 0.030     MT      TMG1179_RR     3High
## 17    17  2014 -0.53    36 -0.590 0.030     GO   BRSGO_8151_RR      1Low
## 18    18  2014 -0.25    36 -0.255 0.030     MT          TMG803   2Medium
## 19    20  2014 -0.75    36 -0.973 0.030     GO   BRSGO_9160_RR      1Low
## 20    21  2014 -0.79    36 -1.071 0.030     TO        M9144_RR     3High
## 21    23  2014 -0.69    36 -0.848 0.030     MT        M9144_RR      1Low
## 22    24  2014 -0.63    36 -0.741 0.030     PR    BMX_Ativa_RR   2Medium
## 23    25  2015 -0.59    40 -0.678 0.027     MS      NA_5909_RG      1Low
## 24    26  2015 -0.67    40 -0.811 0.027     MT        M9144_RR   2Medium
## 25    27  2015 -0.11    40 -0.110 0.027     MS BMX_Potencia_RR      1Low
## 26    28  2015 -0.18    40 -0.182 0.027     MS BMX_Potencia_RR   2Medium
## 27    29  2015 -0.59    40 -0.678 0.027     GO    AS_3730_IPRO      1Low
## 28    30  2015 -0.67    40 -0.811 0.027     GO      TMG1175_RR      1Low
## 29    32  2015 -0.53    40 -0.590 0.027     MT          TMG803   2Medium
## 30    33  2015 -0.68    40 -0.829 0.027     TO        M9144_RR     3High
## 31    34  2015  0.15    40  0.151 0.027     MT      TMG1180_RR      1Low
## 32    35  2015 -0.27    40 -0.277 0.027     MT      TMG1180_RR     3High
## 33    36  2015 -0.29    40 -0.299 0.027     MT      TMG1180_RR   2Medium
## 34    37  2015 -0.85    40 -1.256 0.027     TO        M9144_RR     3High
## Variables not shown: yield (dbl), Y_lev (fctr), Toler (chr)

Plots

par(mfrow=c(1,2))  
plot(density(r_red$r, col="lightgray", xlim = c(-1,0.2)));rug(r_red$r)
## Warning: In density.default(r_red$r, col = "lightgray", xlim = c(-1, 0.2)) :
##  extra arguments 'col', 'xlim' will be disregarded
plot(density(r_red$z, col="lightgray", xlim = c(-1,0.2)));rug(r_red$z)
## Warning: In density.default(r_red$z, col = "lightgray", xlim = c(-1, 0.2)) :
##  extra arguments 'col', 'xlim' will be disregarded

par(mfrow=c(1,2))  
hist(r_red$r,col="lightgray", xlim = c(-1,0)) 
hist(r_red$z,col="lightgray", xlim = c(-1.5,0.3)) 

layout(1)

Exploratory Graphs ~ possible moderators

ggplot(r_red, aes(x=state, y=r, label = r_red$study)) + geom_text()  # -PR  
ggplot(r_red, aes(year, r, label = r_red$study)) + geom_text()  
ggplot(r_red, aes(x=cultivar, y=r, label = r_red$study)) + geom_text() + coord_flip()  
ggplot(r_red, aes(x=Dis_level, y=r, label = r_red$study)) + geom_text() 
ggplot(r_red, aes(x=Y_lev, y=r, label = r_red$study)) + geom_text() 

Random effect model - Overall

(z.random = rma.uni(z, Vz, method="ML", data = r_red))
## 
## Random-Effects Model (k = 34; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0853 (SE = 0.0275)
## tau (square root of estimated tau^2 value):      0.2921
## I^2 (total heterogeneity / total variability):   75.19%
## H^2 (total variability / sampling variability):  4.03
## 
## Test for Heterogeneity: 
## Q(df = 33) = 138.2701, p-val < .0001
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
##  -0.5536   0.0578  -9.5796   <.0001  -0.6668  -0.4403      *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
forest(z.random)

confint(z.random, digits = 2)
## 
##        estimate ci.lb ci.ub
## tau^2      0.09  0.05  0.17
## tau        0.29  0.22  0.42
## I^2(%)    75.19 62.88 86.01
## H^2        4.03  2.69  7.15
fisherz2r(c(est = z.random$b, low = z.random$ci.lb, up = z.random$ci.ub)) 
##        est        low         up 
## -0.5031862 -0.5828850 -0.4138978

Year as moderator

(year_mod = rma.uni(z, Vz, method="ML", mods = ~ factor(year), data= r_red))
## 
## Mixed-Effects Model (k = 34; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0692 (SE = 0.0236)
## tau (square root of estimated tau^2 value):             0.2630
## I^2 (residual heterogeneity / unaccounted variability): 71.09%
## H^2 (unaccounted variability / sampling variability):   3.46
## R^2 (amount of heterogeneity accounted for):            18.91%
## 
## Test for Residual Heterogeneity: 
## QE(df = 30) = 118.5162, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2,3,4): 
## QM(df = 3) = 5.6900, p-val = 0.1277
## 
## Model Results:
## 
##                   estimate      se     zval    pval    ci.lb    ci.ub    
## intrcpt            -0.3348  0.1185  -2.8261  0.0047  -0.5670  -0.1026  **
## factor(year)2013   -0.3335  0.1667  -2.0008  0.0454  -0.6601  -0.0068   *
## factor(year)2014   -0.3440  0.1628  -2.1132  0.0346  -0.6630  -0.0249   *
## factor(year)2015   -0.1960  0.1485  -1.3199  0.1869  -0.4871   0.0950    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(year_mod, digits = 2)
## 
##        estimate ci.lb ci.ub
## tau^2      0.07  0.04  0.17
## tau        0.26  0.20  0.41
## I^2(%)    71.09 59.88 85.59
## H^2        3.46  2.49  6.94
year_mod_1 = rma.uni(z, Vz, method="ML", mods = ~ factor(year)-1, data= r_red)

tab_year = data.frame (est = fisherz2r(year_mod_1$b), 
                       low =fisherz2r(year_mod_1$ci.lb), 
                       up = fisherz2r(year_mod_1$ci.ub))
tab_year
##                         est        low         up
## factor(year)2012 -0.3228530 -0.5131848 -0.1022553
## factor(year)2013 -0.5838511 -0.7153278 -0.4124509
## factor(year)2014 -0.5907352 -0.7150976 -0.4301249
## factor(year)2015 -0.4860178 -0.6083442 -0.3411365

Yield level

( rma.uni(z, Vz, method="ML", mods = ~ Y_lev, data= r_red))
## 
## Mixed-Effects Model (k = 34; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0727 (SE = 0.0245)
## tau (square root of estimated tau^2 value):             0.2697
## I^2 (residual heterogeneity / unaccounted variability): 72.09%
## H^2 (unaccounted variability / sampling variability):   3.58
## R^2 (amount of heterogeneity accounted for):            14.72%
## 
## Test for Residual Heterogeneity: 
## QE(df = 31) = 123.0381, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2,3): 
## QM(df = 2) = 4.2919, p-val = 0.1170
## 
## Model Results:
## 
##               estimate      se     zval    pval    ci.lb    ci.ub     
## intrcpt        -0.7904  0.1296  -6.1001  <.0001  -1.0443  -0.5364  ***
## Y_lev2Medium    0.2375  0.1767   1.3444  0.1788  -0.1088   0.5838     
## Y_lev3High      0.3045  0.1470   2.0717  0.0383   0.0164   0.5925    *
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Yield_mod1  = rma.uni(z, Vz, method="ML", mods = ~ Y_lev -1, data= r_red)

Disease level

(Dis_mod  = rma.uni(z, Vz, method="ML", mods = ~ Dis_level, data= r_red))
## 
## Mixed-Effects Model (k = 34; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0767 (SE = 0.0255)
## tau (square root of estimated tau^2 value):             0.2770
## I^2 (residual heterogeneity / unaccounted variability): 73.16%
## H^2 (unaccounted variability / sampling variability):   3.73
## R^2 (amount of heterogeneity accounted for):            10.04%
## 
## Test for Residual Heterogeneity: 
## QE(df = 31) = 127.0944, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2,3): 
## QM(df = 2) = 2.6937, p-val = 0.2601
## 
## Model Results:
## 
##                   estimate      se     zval    pval    ci.lb    ci.ub     
## intrcpt            -0.5410  0.1079  -5.0153  <.0001  -0.7524  -0.3296  ***
## Dis_level2Medium    0.0846  0.1404   0.6029  0.5466  -0.1905   0.3598     
## Dis_level3High     -0.1276  0.1428  -0.8934  0.3716  -0.4076   0.1523     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Dis_mod1  = rma.uni(z, Vz, method="ML", mods = ~ Dis_level -1, data= r_red)
#tab_dis = data.frame (est = fisherz2r(Dis_mod1$b), 
#                        low =fisherz2r(Dis_mod1$ci.lb), 
#                        up = fisherz2r(Dis_mod1$ci.ub))
#tab_dis

State as moderator

( rma.uni(z, Vz, method="ML", mods = ~ state, data= r_red) )
## 
## Mixed-Effects Model (k = 34; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0386 (SE = 0.0162)
## tau (square root of estimated tau^2 value):             0.1963
## I^2 (residual heterogeneity / unaccounted variability): 57.78%
## H^2 (unaccounted variability / sampling variability):   2.37
## R^2 (amount of heterogeneity accounted for):            54.80%
## 
## Test for Residual Heterogeneity: 
## QE(df = 29) = 80.6743, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2,3,4,5): 
## QM(df = 4) = 23.8676, p-val < .0001
## 
## Model Results:
## 
##          estimate      se     zval    pval    ci.lb    ci.ub     
## intrcpt   -1.0517  0.1489  -7.0628  <.0001  -1.3436  -0.7599  ***
## stateGO    0.3290  0.1747   1.8836  0.0596  -0.0133   0.6713    .
## stateMS    0.7279  0.1824   3.9905  <.0001   0.3704   1.0854  ***
## stateMT    0.6220  0.1632   3.8110  0.0001   0.3021   0.9418  ***
## statePR    0.3107  0.2360   1.3168  0.1879  -0.1518   0.7732     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
state_mod = rma.uni(z, Vz, method="ML", mods = ~ state-1, data= r_red)

tab_state = data.frame (est = fisherz2r(state_mod$b), 
                       low =fisherz2r(state_mod$ci.lb), 
                       up = fisherz2r(state_mod$ci.ub))
tab_state
##                est        low         up
## stateTO -0.7824737 -0.8725284 -0.6409956
## stateGO -0.6186036 -0.7170910 -0.4958961
## stateMS -0.3129788 -0.4856114 -0.1168509
## stateMT -0.4051122 -0.5084672 -0.2902500
## statePR -0.6297490 -0.8004202 -0.3646334

Cultivar (Tolerance) as moderator

(cv_mod = rma.uni(z, Vz, method="ML", mods = ~ factor(Toler), data= r_study1))
## Warning in rma.uni(z, Vz, method = "ML", mods = ~factor(Toler), data =
## r_study1): Studies with NAs omitted from model fitting.
## 
## Mixed-Effects Model (k = 35; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0219 (SE = 0.0120)
## tau (square root of estimated tau^2 value):             0.1480
## I^2 (residual heterogeneity / unaccounted variability): 43.70%
## H^2 (unaccounted variability / sampling variability):   1.78
## R^2 (amount of heterogeneity accounted for):            73.69%
## 
## Test for Residual Heterogeneity: 
## QE(df = 32) = 62.0317, p-val = 0.0011
## 
## Test of Moderators (coefficient(s) 2,3): 
## QM(df = 2) = 43.2437, p-val < .0001
## 
## Model Results:
## 
##                        estimate      se     zval    pval    ci.lb    ci.ub
## intrcpt                 -0.2338  0.0737  -3.1737  0.0015  -0.3783  -0.0894
## factor(Toler)2_Medium   -0.2443  0.0985  -2.4811  0.0131  -0.4372  -0.0513
## factor(Toler)3_Low      -0.6074  0.0949  -6.3983  <.0001  -0.7934  -0.4213
##                           
## intrcpt                 **
## factor(Toler)2_Medium    *
## factor(Toler)3_Low     ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(cv_mod, digits = 2)
## 
##        estimate ci.lb ci.ub
## tau^2      0.02  0.01  0.07
## tau        0.15  0.08  0.26
## I^2(%)    43.70 19.96 70.15
## H^2        1.78  1.25  3.35
cv_mod_1 = rma.uni(z, Vz, method="ML", mods = ~ factor(Toler)-1, data= r_study1)
## Warning in rma.uni(z, Vz, method = "ML", mods = ~factor(Toler) - 1, data =
## r_study1): Studies with NAs omitted from model fitting.
tab_cv_tol = data.frame (est = fisherz2r(cv_mod_1$b), 
                     low =fisherz2r(cv_mod_1$ci.lb), 
                     up = fisherz2r(cv_mod_1$ci.ub))
tab_cv_tol
##                              est        low          up
## factor(Toler)1_High   -0.2296723 -0.3611930 -0.08919221
## factor(Toler)2_Medium -0.4447261 -0.5413634 -0.33649196
## factor(Toler)3_Low    -0.6864452 -0.7436075 -0.61932100