getwd()
## [1] "E:/R ALGORITHM/UBCF(User-based collaborative filtering)"
setwd("E:/R ALGORITHM/UBCF(User-based collaborative filtering)")
Age_income<-read.csv("Age_income.csv",header=TRUE)
print(Age_income)
## Age Income
## 1 50 1273
## 2 24 1591
## 3 39 1680
## 4 46 1179
## 5 38 1107
## 6 42 1286
## 7 23 1328
## 8 36 1526
## 9 34 1188
## 10 28 1227
## 11 29 1738
## 12 45 1194
## 13 30 1834
## 14 28 1321
## 15 26 1263
## 16 31 1935
## 17 48 1287
## 18 42 1276
## 19 33 1228
## 20 40 1445
## 21 29 1468
## 22 25 1498
## 23 36 1211
## 24 27 1257
## 25 42 1477
## 26 33 1466
## 27 24 1922
## 28 34 1722
## 29 26 1957
## 30 48 1701
## 31 25 1586
## 32 37 1354
## 33 27 1994
## 34 40 1255
## 35 48 1930
## 36 33 1741
## 37 40 1569
## 38 29 1638
## 39 29 1425
## 40 44 1871
## 41 42 1006
## 42 24 1922
## 43 35 1594
## 44 44 1904
## 45 29 1529
## 46 29 1819
## 47 37 1203
## 48 48 1822
## 49 28 1623
## 50 29 1853
## 51 42 1365
## 52 34 1840
## 53 41 1003
## 54 39 1800
## 55 37 1490
## 56 38 1531
## 57 48 1697
## 58 45 1127
## 59 39 1434
## 60 44 1515
## 61 36 1650
## 62 36 1219
## 63 39 1723
## 64 44 1459
## 65 25 1424
## 66 30 1900
## 67 40 1125
## 68 46 1145
## 69 35 1387
## 70 41 1346
## 71 23 1403
## 72 24 1631
## 73 28 1938
## 74 26 1059
## 75 46 1204
## 76 30 1349
## 77 44 1978
## 78 32 1491
## 79 28 1605
## 80 39 1842
## 81 30 1891
## 82 38 1952
## 83 40 1934
## 84 33 1829
## 85 41 1066
## 86 24 1712
## 87 41 1909
## 88 48 1586
## 89 29 1315
## 90 45 2000
## 91 33 1241
## 92 50 1092
## 93 39 1159
## 94 50 1537
## 95 33 1959
## 96 49 1625
## 97 44 1716
## 98 38 1551
## 99 42 1233
## 100 23 1452
AP<-read.csv("Amazon_products.csv",header=TRUE)
print(AP)
## user Product Date City Age Gender
## 1 101 Iphone 13-04-2016 London 25 1
## 2 102 Nokia 10-04-2016 USA 26 0
## 3 103 Samsung 01-04-2016 CHINA 27 1
## 4 104 HTC 04-04-2016 Singapore 28 0
## 5 105 MI 08-04-2016 China 29 1
## 6 106 Lenovo 07-04-2016 Dubai 22 0
## 7 107 blackberry 13-04-2016 Europe 23 1
## 8 108 Micromax 14-04-2016 INDIA 24 0
## 9 109 Celkon 15-04-2016 Srilanka 21 1
## 10 110 Intex 16-04-2016 Austrailla 20 0
## 11 101 Iphone 14-04-2016 London 25 1
## 12 102 Nokia 10-04-2016 USA 26 0
## 13 103 Samsung 02-04-2016 CHINA 27 1
## 14 104 HTC 05-04-2016 Singapore 28 0
## 15 105 MI 09-04-2016 China 29 1
## 16 106 Lenovo 08-04-2016 Dubai 22 0
## 17 102 Nokia 10-04-2016 USA 26 0
## 18 108 Micromax 15-04-2016 INDIA 24 0
## 19 109 Celkon 16-04-2016 Srilanka 21 1
## 20 102 Nokia 10-04-2016 USA 26 0
## URL Revene
## 1 https://www.Flipkart.com 1689
## 2 https://www.amazon.com 1341
## 3 https://www.snapdeal.com 4395
## 4 https://www.shopclues.com 3818
## 5 https://www.Slickdeals.net 1425
## 6 https://www.ebay.com 4893
## 7 https://www.google.co.in/chromecast/get-offers/ 4284
## 8 http://www.newegg.com/global/in 4783
## 9 https://www.paytm.com/ 4677
## 10 https://www.yahoo.com 2861
## 11 https://www.Flipkart.com 3515
## 12 https://www.amazon.com 4537
## 13 https://www.snapdeal.com 4804
## 14 https://www.shopclues.com 2057
## 15 https://www.Slickdeals.net 1055
## 16 https://www.ebay.com 3519
## 17 https://www.amazon.com 4383
## 18 http://www.newegg.com 1891
## 19 https://www.paytm.com/ 3175
## 20 https://www.amazon.com 1904
AP1<-AP[,-c(2,4,7)]
AP1<-AP1[,-c(2)]
dim(AP1)
## [1] 20 4
APclust<-kmeans(AP1,3)
APclust1<-cbind(AP1,APclust$cluster)
plot(AP1,col=APclust$cluster)
clust<-kmeans(Age_income,3)
summary(clust)
## Length Class Mode
## cluster 100 -none- numeric
## centers 6 -none- numeric
## totss 1 -none- numeric
## withinss 3 -none- numeric
## tot.withinss 1 -none- numeric
## betweenss 1 -none- numeric
## size 3 -none- numeric
## iter 1 -none- numeric
## ifault 1 -none- numeric
Age_income1<-cbind(Age_income,clust$cluster)
plot(Age_income,col=clust$cluster)
points(clust$centers,col=1:2,pch=8,cex=2)