check % of people who chose SS in each condition - 1 is SS, 2 is LL, 3 is No Default the control condition falls in the middle of the other 2 default conditions
prop.test(table(all$cond, all$SS))
##
## 3-sample test for equality of proportions without continuity
## correction
##
## data: table(all$cond, all$SS)
## X-squared = 14.373, df = 2, p-value = 0.0007566
## alternative hypothesis: two.sided
## sample estimates:
## prop 1 prop 2 prop 3
## 0.5964467 0.5395189 0.4639423
but the control condition is not significantly different from LL, only from SS
SScontrol<-subset(all, cond!="LL")
SScontrol<-droplevels(SScontrol)
prop.test(table(SScontrol$cond, SScontrol$SS))
##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: table(SScontrol$cond, SScontrol$SS)
## X-squared = 3.6159, df = 1, p-value = 0.05723
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.002017294 0.153170479
## sample estimates:
## prop 1 prop 2
## 0.5395189 0.4639423
LLcontrol<-subset(all, cond!="SS")
LLcontrol<-droplevels(LLcontrol)
prop.test(table(LLcontrol$cond, LLcontrol$SS))
##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: table(LLcontrol$cond, LLcontrol$SS)
## X-squared = 1.9896, df = 1, p-value = 0.1584
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.02106869 0.13492429
## sample estimates:
## prop 1 prop 2
## 0.5964467 0.5395189
nocontrol<-subset(all, cond !="no")
nocontrol<-droplevels(nocontrol)
prop.test(table(nocontrol$cond, nocontrol$SS))
##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: table(nocontrol$cond, nocontrol$SS)
## X-squared = 13.73, df = 1, p-value = 0.000211
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.06189135 0.20311744
## sample estimates:
## prop 1 prop 2
## 0.5964467 0.4639423
I think it’s easiest to understand how preferences (delta) interact with default condition if we break it down into first looking at SS default vs. no default, and then LL default vs. no default. We can look at all 3 together after.
First, SS vs. no default shows that setting the default as SS only has an effect for people above delta=.0053, i.e. people with relatively high discount rates for whom the SS option is the “preference consistent” option
summary(glm(SS ~ cond * delta, data=SScontrol, family="binomial"))
##
## Call:
## glm(formula = SS ~ cond * delta, family = "binomial", data = SScontrol)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2651 -1.0263 0.2773 1.1712 1.6335
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.1296 0.3002 -3.763 0.000168 ***
## condSS -1.3685 0.4540 -3.014 0.002576 **
## delta 170.6853 48.6619 3.508 0.000452 ***
## condSS:delta 318.6699 79.6266 4.002 6.28e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 980.04 on 706 degrees of freedom
## Residual deviance: 876.59 on 703 degrees of freedom
## AIC: 884.59
##
## Number of Fisher Scoring iterations: 4
f1<-(glm(SS~cond*delta, data=SScontrol, family="binomial"))
library(visreg)
col<-c("black", "blue")
col2<-c("gray80", "cornflowerblue")
col3<-adjustcolor(col2, alpha=.7)
visreg(f1, "delta", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE, scale="response", xlab="discount rate", ylab="P (choosing SS)")
Similarly, for LL+control conditions only, condition only has an effect for delta<= .0056. In other words, setting the LL as default only has an effect for people who are relatively patient - those for whom the LL option is preference consistent
summary(glm(SS~cond*delta, data=LLcontrol,family="binomial"))
##
## Call:
## glm(formula = SS ~ cond * delta, family = "binomial", data = LLcontrol)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1563 -0.9747 -0.7037 1.1410 2.1506
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.7095 0.3101 -8.737 < 2e-16 ***
## condno 1.5799 0.4316 3.661 0.000252 ***
## delta 395.8623 49.7476 7.957 1.76e-15 ***
## condno:delta -225.1770 69.5903 -3.236 0.001213 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 935.25 on 684 degrees of freedom
## Residual deviance: 839.84 on 681 degrees of freedom
## AIC: 847.84
##
## Number of Fisher Scoring iterations: 4
f2<-(glm(SS~cond*delta, data=LLcontrol,family="binomial"))
col<-c("red", "black")
col2<-c("indianred1" , "gray80")
col3<-adjustcolor(col2, alpha=.45)
visreg(f2, "delta", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE, xlab="discount rate", scale="response", ylab="P (choosing SS)")
I think this discrete analysis is most straightforward and the most direct test of our theory:
patient people who saw the LL default and impatient people who saw the SS default saw a default that was consistent with their preferences. these people were much more likely to choose the default option than people who saw a default that was inconsistent with their preferences.
patient and impatient here is defined as 1st and 3rd quartiles
summary(all$delta)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.001147 0.003775 0.004620 0.005699 0.007145 0.014980
all$consistent[(all$deltac<=0.003775 & all$cond=="SS") | (all$deltac>=0.007145 & all$cond=="LL")]<-1
all$consistent[(all$deltac<=0.003775 & all$cond=="LL") | (all$deltac>=0.007145 & all$cond=="SS")]<-0
prop.test(table(all$stay, all$consistent))
##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: table(all$stay, all$consistent)
## X-squared = 15.371, df = 1, p-value = 8.832e-05
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.22527435 -0.07458539
## sample estimates:
## prop 1 prop 2
## 0.3935484 0.5434783
confirming that the default only exists for people in the middle range of patience
summary(glm(SS~deltac*cond, data=nocontrol, family=binomial))
##
## Call:
## glm(formula = SS ~ deltac * cond, family = binomial, data = nocontrol)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2651 -0.8901 -0.6681 0.9967 2.1506
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.4535 0.1146 -3.957 7.58e-05 ***
## deltac 395.8623 49.7476 7.957 1.76e-15 ***
## condSS 0.7443 0.1623 4.585 4.55e-06 ***
## deltac:condSS 93.4929 80.2948 1.164 0.244
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1120.28 on 809 degrees of freedom
## Residual deviance: 939.56 on 806 degrees of freedom
## AIC: 947.56
##
## Number of Fisher Scoring iterations: 4
summary(all$deltac)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.004552 -0.001924 -0.001079 0.000000 0.001446 0.009280
patient<-subset(nocontrol, deltac <= -0.001924)
impatient<-subset(nocontrol, deltac >= 0.001446)
middle<-subset(nocontrol, nocontrol$deltac > -0.001924 & nocontrol$deltac < 0.001446)
prop.test(table(patient$SS, patient$cond))
##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: table(patient$SS, patient$cond)
## X-squared = 0.081643, df = 1, p-value = 0.7751
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.1590716 0.2499807
## sample estimates:
## prop 1 prop 2
## 0.5000000 0.4545455
prop.test(table(impatient$SS, impatient$cond))
##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: table(impatient$SS, impatient$cond)
## X-squared = 1.204, df = 1, p-value = 0.2725
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.07031088 0.28219861
## sample estimates:
## prop 1 prop 2
## 0.5869565 0.4810127
prop.test(table(middle$SS, middle$cond))
##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: table(middle$SS, middle$cond)
## X-squared = 19.235, df = 1, p-value = 1.156e-05
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.1226600 0.3212614
## sample estimates:
## prop 1 prop 2
## 0.5779817 0.3560209
let’s look at reactance! it seems to increase as people’s preferences become less consistent with the default they see
nocontrol<-subset(all, cond!="no")
r<-(glm(statereactance ~ delta*cond, data=nocontrol))
visreg(r, "delta", by="cond", overlay=TRUE, partial=FALSE, ylab="reactance")
and it seems to at least partially mediate:
summary(glm(statereactance ~ cond*delta, data=nocontrol))
##
## Call:
## glm(formula = statereactance ~ cond * delta, data = nocontrol)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -5.5052 -1.4177 -0.4016 1.3604 9.8014
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.7561 0.3109 21.733 < 2e-16 ***
## condSS 1.3267 0.4497 2.950 0.00327 **
## delta 143.2256 49.1898 2.912 0.00369 **
## condSS:delta -227.0813 72.6401 -3.126 0.00183 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 6.243609)
##
## Null deviance: 5100.8 on 809 degrees of freedom
## Residual deviance: 5032.3 on 806 degrees of freedom
## AIC: 3788.2
##
## Number of Fisher Scoring iterations: 2
summary(glm(stay ~ statereactance, data=nocontrol, family=binomial))
##
## Call:
## glm(formula = stay ~ statereactance, family = binomial, data = nocontrol)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5563 -1.2707 0.9349 1.0349 1.5920
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.24191 0.23510 5.283 1.27e-07 ***
## statereactance -0.12814 0.02921 -4.387 1.15e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1109 on 809 degrees of freedom
## Residual deviance: 1089 on 808 degrees of freedom
## AIC: 1093
##
## Number of Fisher Scoring iterations: 4
summary(glm(stay ~ cond*delta, data=nocontrol, family=binomial))
##
## Call:
## glm(formula = stay ~ cond * delta, family = binomial, data = nocontrol)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2651 -0.9592 0.5755 0.8324 2.1563
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.7095 0.3101 8.737 < 2e-16 ***
## condSS -5.2077 0.4607 -11.305 < 2e-16 ***
## delta -395.8623 49.7476 -7.957 1.76e-15 ***
## condSS:delta 885.2174 80.2948 11.025 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1108.99 on 809 degrees of freedom
## Residual deviance: 939.56 on 806 degrees of freedom
## AIC: 947.56
##
## Number of Fisher Scoring iterations: 4
summary(glm(stay ~ statereactance + cond*delta, data=nocontrol, family=binomial))
##
## Call:
## glm(formula = stay ~ statereactance + cond * delta, family = binomial,
## data = nocontrol)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.3387 -0.9422 0.5379 0.8755 2.2381
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.51222 0.39657 8.857 < 2e-16 ***
## statereactance -0.11272 0.03261 -3.457 0.000547 ***
## condSS -5.15590 0.46505 -11.087 < 2e-16 ***
## delta -385.66735 49.97731 -7.717 1.19e-14 ***
## condSS:delta 876.32073 81.02577 10.815 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1108.99 on 809 degrees of freedom
## Residual deviance: 927.35 on 805 degrees of freedom
## AIC: 937.35
##
## Number of Fisher Scoring iterations: 4
at least in the LL condition
LL<-subset(all, cond=="LL")
summary(glm(statereactance ~ delta, data=LL))
##
## Call:
## glm(formula = statereactance ~ delta, data = LL)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -5.5052 -1.3992 -0.3637 1.5650 7.6727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.7561 0.3104 21.762 < 2e-16 ***
## delta 143.2256 49.1225 2.916 0.00375 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 6.226538)
##
## Null deviance: 2493.7 on 393 degrees of freedom
## Residual deviance: 2440.8 on 392 degrees of freedom
## AIC: 1842.7
##
## Number of Fisher Scoring iterations: 2
summary(glm(SS ~ delta, data= LL))
##
## Call:
## glm(formula = SS ~ delta, data = LL)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.9676 -0.2977 -0.2167 0.3629 0.9775
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.08444 0.05494 -1.537 0.125
## delta 84.44908 8.69267 9.715 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.194981)
##
## Null deviance: 94.835 on 393 degrees of freedom
## Residual deviance: 76.433 on 392 degrees of freedom
## AIC: 477.99
##
## Number of Fisher Scoring iterations: 2
summary(glm(SS ~ statereactance, data=LL))
##
## Call:
## glm(formula = SS ~ statereactance, data = LL)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.5603 -0.3867 -0.3288 0.5554 0.7291
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.18404 0.07783 2.365 0.01853 *
## statereactance 0.02895 0.00974 2.972 0.00314 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.236596)
##
## Null deviance: 94.835 on 393 degrees of freedom
## Residual deviance: 92.746 on 392 degrees of freedom
## AIC: 554.21
##
## Number of Fisher Scoring iterations: 2
summary(glm(SS ~ statereactance + delta, data=LL))
##
## Call:
## glm(formula = SS ~ statereactance + delta, data = LL)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.9921 -0.2978 -0.1933 0.3843 0.9429
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.197850 0.081371 -2.431 0.0155 *
## statereactance 0.016786 0.008909 1.884 0.0603 .
## delta 82.044842 8.757978 9.368 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1937207)
##
## Null deviance: 94.835 on 393 degrees of freedom
## Residual deviance: 75.745 on 391 degrees of freedom
## AIC: 476.42
##
## Number of Fisher Scoring iterations: 2
not in SS
SS<-subset(all, cond=="SS")
summary(glm(statereactance ~ delta, data=SS))
##
## Call:
## glm(formula = statereactance ~ delta, data = SS)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.8137 -1.5033 -0.4946 1.3079 9.8014
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.0828 0.3254 24.841 <2e-16 ***
## delta -83.8558 53.5196 -1.567 0.118
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 6.259773)
##
## Null deviance: 2606.9 on 415 degrees of freedom
## Residual deviance: 2591.5 on 414 degrees of freedom
## AIC: 1947.6
##
## Number of Fisher Scoring iterations: 2
summary(glm(SS ~ delta, data= SS))
##
## Call:
## glm(formula = SS ~ delta, data = SS)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.95807 -0.38996 -0.01069 0.46804 0.70756
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.01405 0.05882 0.239 0.811
## delta 92.70198 9.67431 9.582 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.2045374)
##
## Null deviance: 103.459 on 415 degrees of freedom
## Residual deviance: 84.678 on 414 degrees of freedom
## AIC: 524.36
##
## Number of Fisher Scoring iterations: 2
summary(glm(SS ~ statereactance, data=SS))
##
## Call:
## glm(formula = SS ~ statereactance, data = SS)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.6867 -0.5233 0.3133 0.4440 0.7707
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.784668 0.077380 10.140 < 2e-16 ***
## statereactance -0.032666 0.009658 -3.382 0.000787 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.2431819)
##
## Null deviance: 103.46 on 415 degrees of freedom
## Residual deviance: 100.68 on 414 degrees of freedom
## AIC: 596.35
##
## Number of Fisher Scoring iterations: 2
summary(glm(SS ~ statereactance + delta, data=SS))
##
## Call:
## glm(formula = SS ~ statereactance + delta, data = SS)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.99491 -0.38732 -0.04527 0.44887 0.81722
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.22666 0.09194 2.465 0.01410 *
## statereactance -0.02630 0.00880 -2.989 0.00296 **
## delta 90.49617 9.61127 9.416 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.2006907)
##
## Null deviance: 103.459 on 415 degrees of freedom
## Residual deviance: 82.885 on 413 degrees of freedom
## AIC: 517.45
##
## Number of Fisher Scoring iterations: 2
Looking at preference certainty
all$prefcertainty<-(all$prefstrength1 + all$prefstrength2)/2
summary(all$prefcertainty)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 2.000 4.000 4.500 4.402 5.000 5.000 491
certain<-subset(all, prefcertainty>=4.5)
uncertain<-subset(all, prefcertainty<=4.5)
#prefernce certainty didnt have a significant effect on staying with the default
summary(glm(stay~prefcertainty, data=all, family=binomial))
##
## Call:
## glm(formula = stay ~ prefcertainty, family = binomial, data = all)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.338 -1.257 1.062 1.100 1.120
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.6036 0.7332 0.823 0.41
## prefcertainty -0.0932 0.1641 -0.568 0.57
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 563.27 on 408 degrees of freedom
## Residual deviance: 562.95 on 407 degrees of freedom
## (692 observations deleted due to missingness)
## AIC: 566.95
##
## Number of Fisher Scoring iterations: 3
#it did interact with condition, but in an unexpected way (lower preference certainty did increase the probability of choosing the default option in the SS default condition, but the opposite was true in the LL default condition. This appears to be due to the fact that preference certainty was correlated with preference extremity
summary(glm(stay~prefcertainty*cond, data=all, family=binomial))
##
## Call:
## glm(formula = stay ~ prefcertainty * cond, family = binomial,
## data = all)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5850 -1.1753 0.8981 1.0157 1.6844
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.3690 1.0459 -2.265 0.02351 *
## prefcertainty 0.6138 0.2351 2.611 0.00903 **
## condSS 6.5308 1.5789 4.136 3.53e-05 ***
## prefcertainty:condSS -1.5397 0.3532 -4.359 1.31e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 563.27 on 408 degrees of freedom
## Residual deviance: 540.52 on 405 degrees of freedom
## (692 observations deleted due to missingness)
## AIC: 548.52
##
## Number of Fisher Scoring iterations: 4
cor.test(all$prefcertainty, all$deltac)
##
## Pearson's product-moment correlation
##
## data: all$prefcertainty and all$deltac
## t = -6.7525, df = 608, p-value = 3.401e-11
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.3364553 -0.1886963
## sample estimates:
## cor
## -0.2641249
#there was no 3 way interaction between preferences, preference certainty, and condition
summary(glm(stay~prefcertainty*deltac*cond, data=all, family=binomial))
##
## Call:
## glm(formula = stay ~ prefcertainty * deltac * cond, family = binomial,
## data = all)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2970 -0.8924 0.4983 0.8596 2.0358
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.3954 1.1784 -1.184 0.23636
## prefcertainty 0.4015 0.2645 1.518 0.12896
## deltac -30.5108 427.5352 -0.071 0.94311
## condSS 4.6661 1.7642 2.645 0.00817 **
## prefcertainty:deltac -73.6199 97.3360 -0.756 0.44944
## prefcertainty:condSS -1.0973 0.3964 -2.768 0.00564 **
## deltac:condSS 350.1642 812.1908 0.431 0.66637
## prefcertainty:deltac:condSS 109.4699 183.3222 0.597 0.55041
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 563.27 on 408 degrees of freedom
## Residual deviance: 467.15 on 401 degrees of freedom
## (692 observations deleted due to missingness)
## AIC: 483.15
##
## Number of Fisher Scoring iterations: 4
table(all$stay)