Data Cleaning

  1. use job type “1=RN” and “2=Tech” only.
  2. missing questions and multiple answers to one question are marked as wrong.

All

##       Test Summary.post Summary.pre P.Value
## 1    IQsum    0.4 (0.3)   0.3 (0.2)  0.0211
## 3     Qsum    0.7 (0.2)   0.6 (0.2)  <.0001
## 5 Scoresum    0.6 (0.1)   0.5 (0.2)  <.0001

Jobs Type

result.rn
##       Test Summary.post Summary.pre P.Value
## 1    IQsum    0.4 (0.3)   0.3 (0.2)  0.1568
## 5     Qsum    0.7 (0.2)   0.6 (0.1)  <.0001
## 9 Scoresum    0.6 (0.1)   0.5 (0.1)  <.0001
result.tech
##        Test Summary.post Summary.pre P.Value
## 2     IQsum    0.4 (0.3)   0.2 (0.2)  0.0978
## 6      Qsum    0.6 (0.2)   0.5 (0.2)  0.0074
## 10 Scoresum    0.5 (0.1)   0.4 (0.1)  0.0015
# interaction test
summary(lm(Score~Visit*Job, subset(dat3, Test=="IQsum")))
## 
## Call:
## lm(formula = Score ~ Visit * Job, data = subset(dat3, Test == 
##     "IQsum"))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.39130 -0.14130 -0.08553  0.16447  0.66447 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.33553    0.02893  11.597   <2e-16 ***
## Visitpost       0.05578    0.03910   1.427   0.1551    
## Job2           -0.10068    0.05258  -1.915   0.0568 .  
## Visitpost:Job2  0.06165    0.07967   0.774   0.4399    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2522 on 219 degrees of freedom
## Multiple R-squared:  0.04166,    Adjusted R-squared:  0.02853 
## F-statistic: 3.173 on 3 and 219 DF,  p-value: 0.0251
summary(lm(Score~Visit*Job, subset(dat3, Test=="Qsum")))
## 
## Call:
## lm(formula = Score ~ Visit * Job, data = subset(dat3, Test == 
##     "Qsum"))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.42391 -0.12391 -0.00658  0.09342  0.31818 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.60658    0.01783  34.027  < 2e-16 ***
## Visitpost       0.11733    0.02409   4.871 2.13e-06 ***
## Job2           -0.15506    0.03240  -4.786 3.13e-06 ***
## Visitpost:Job2  0.01297    0.04909   0.264    0.792    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1554 on 219 degrees of freedom
## Multiple R-squared:  0.2699, Adjusted R-squared:  0.2599 
## F-statistic: 26.99 on 3 and 219 DF,  p-value: 6.826e-15
summary(lm(Score~Visit*Job, subset(dat3, Test=="Scoresum")))
## 
## Call:
## lm(formula = Score ~ Visit * Job, data = subset(dat3, Test == 
##     "Scoresum"))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.34317 -0.09411  0.01398  0.09790  0.29969 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.52914    0.01543  34.288  < 2e-16 ***
## Visitpost       0.09975    0.02085   4.783 3.17e-06 ***
## Job2           -0.13952    0.02805  -4.975 1.32e-06 ***
## Visitpost:Job2  0.02688    0.04250   0.632    0.528    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1345 on 219 degrees of freedom
## Multiple R-squared:  0.2717, Adjusted R-squared:  0.2618 
## F-statistic: 27.24 on 3 and 219 DF,  p-value: 5.207e-15

Experience

result.exp
##       Test Visit       < 1       1~5      5~10      > 10
## 1     Qsum   pre 0.5 (0.2) 0.6 (0.2) 0.6 (0.2) 0.6 (0.2)
## 2     Qsum  post 0.7 (0.3) 0.7 (0.2) 0.7 (0.2) 0.7 (0.1)
## 3    IQsum   pre 0.3 (0.2) 0.4 (0.2) 0.3 (0.3) 0.3 (0.2)
## 4    IQsum  post 0.4 (0.1) 0.4 (0.3) 0.4 (0.3) 0.4 (0.2)
## 5 Scoresum   pre 0.5 (0.2) 0.5 (0.1) 0.5 (0.2) 0.5 (0.2)
## 6 Scoresum  post 0.6 (0.2) 0.6 (0.1) 0.6 (0.1) 0.6 (0.1)
# interaction test
anova(lm(Score~Visit*Job.Years, subset(dat3, Test=="IQsum")))
## Analysis of Variance Table
## 
## Response: Score
##                  Df  Sum Sq Mean Sq F value  Pr(>F)  
## Visit             1  0.3611 0.36114  5.4572 0.02046 *
## Job.Years         3  0.1554 0.05180  0.7827 0.50482  
## Visit:Job.Years   3  0.0149 0.00497  0.0751 0.97333  
## Residuals       204 13.5001 0.06618                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(lm(Score~Visit*Job.Years, subset(dat3, Test=="Qsum")))
## Analysis of Variance Table
## 
## Response: Score
##                  Df Sum Sq Mean Sq F value    Pr(>F)    
## Visit             1 0.9511 0.95113 32.4516 4.227e-08 ***
## Job.Years         3 0.0375 0.01251  0.4270    0.7339    
## Visit:Job.Years   3 0.0109 0.00364  0.1242    0.9457    
## Residuals       204 5.9791 0.02931                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(lm(Score~Visit*Job.Years, subset(dat3, Test=="Scoresum")))
## Analysis of Variance Table
## 
## Response: Score
##                  Df Sum Sq Mean Sq F value    Pr(>F)    
## Visit             1 0.7540 0.75397 34.3780 1.805e-08 ***
## Job.Years         3 0.0540 0.01800  0.8209    0.4837    
## Visit:Job.Years   3 0.0028 0.00092  0.0419    0.9886    
## Residuals       204 4.4741 0.02193                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1