Read CSV into R

AirQualityData = read.csv(file="airquality.csv", header=TRUE, sep=",")

#O3 - Ozone
#NO2 - Nitrogen dioxide
#NO - Nitric oxide
#SO2 - Sulfur dioxide
#PM10 - Particulate Matter of less than 10 millionths of a metre

head(AirQualityData)
##   X Ozone Solar.R Wind Temperature Month Day
## 1 1    41     190  7.4          67     5   1
## 2 2    36     118  8.0          72     5   2
## 3 3    12     149 12.6          74     5   3
## 4 4    18     313 11.5          62     5   4
## 5 5    NA      NA 14.3          56     5   5
## 6 6    28      NA 14.9          66     5   6
summary(AirQualityData)
##        X           Ozone           Solar.R           Wind       
##  Min.   :  1   Min.   :  1.00   Min.   :  7.0   Min.   : 1.700  
##  1st Qu.: 39   1st Qu.: 18.00   1st Qu.:115.8   1st Qu.: 7.400  
##  Median : 77   Median : 31.50   Median :205.0   Median : 9.700  
##  Mean   : 77   Mean   : 42.13   Mean   :185.9   Mean   : 9.958  
##  3rd Qu.:115   3rd Qu.: 63.25   3rd Qu.:258.8   3rd Qu.:11.500  
##  Max.   :153   Max.   :168.00   Max.   :334.0   Max.   :20.700  
##                NA's   :37       NA's   :7                       
##   Temperature        Month            Day      
##  Min.   :56.00   Min.   :5.000   Min.   : 1.0  
##  1st Qu.:72.00   1st Qu.:6.000   1st Qu.: 8.0  
##  Median :79.00   Median :7.000   Median :16.0  
##  Mean   :77.88   Mean   :6.993   Mean   :15.8  
##  3rd Qu.:85.00   3rd Qu.:8.000   3rd Qu.:23.0  
##  Max.   :97.00   Max.   :9.000   Max.   :31.0  
## 
#install.packages(c("ggplot2","gcookbook"))
#install.packages("ggplot2")
library(ggplot2)
library(gcookbook)


#Histogram
ggplot(AirQualityData, aes(x=Temperature)) + geom_histogram(binwidth=1)

boxplot(Temperature ~ Month, xlab="Month", ylab="Temperature", data=AirQualityData)

#Scatterplot
ggplot(AirQualityData, aes(x=Temperature, y=Ozone)) + geom_point(shape=1)
## Warning: Removed 37 rows containing missing values (geom_point).