Source for this document.
@dattali asked, “what’s a safe way to iterate over rows of a data frame?” The example was to convert each row into a list and return a list of lists, indexed first by column, then by row.
A number of people gave suggestions on Twitter, which I’ve collected here. I’ve benchmarked these methods with data of various sizes; scroll down to see a plot of times.
library(purrr)
library(dplyr)
library(tidyr)
# @dattali
# Using apply (only safe when all cols are same type)
f_apply <- function(df) {
apply(df, 1, function(row) as.list(row))
}
# @drob
# split + lapply
f_split_lapply <- function(df) {
df <- split(df, seq_len(nrow(df)))
lapply(df, function(row) as.list(row))
}
# @winston_chang
# lapply over row indices
f_lapply_row <- function(df) {
lapply(seq_len(nrow(df)), function(i) as.list(df[i,,drop=FALSE]))
}
# @winston_chang
# lapply + lapply: Treat data frame as list, and the slice out lists
f_lapply_lapply <- function(df) {
cols <- seq_len(length(df))
names(cols) <- names(df)
lapply(seq_len(nrow(df)), function(row) {
lapply(cols, function(col) {
df[[col]][[row]]
})
})
}
# @winston_chang
# purrr::by_row
f_by_row <- function(df) {
res <- by_row(df, function(row) as.list(row))
res$.out
}
# @JennyBryan
# purrr::pmap
f_pmap <- function(df) {
pmap(df, list)
}
# purrr::pmap, but coerce df to a list first
f_pmap_aslist <- function(df) {
pmap(as.list(df), list)
}
# @krlmlr
# dplyr::rowwise
f_rowwise <- function(df) {
df %>% rowwise %>% do(row = as.list(.))
}
Benchmark each of them, using data sets with varying numbers of rows:
run_benchmark <- function(nrow) {
# Make some data
df <- data.frame(
x = rnorm(nrow),
y = runif(nrow),
z = runif(nrow)
)
res <- list(
apply = system.time(f_apply(df)),
split_lapply = system.time(f_split_lapply(df)),
lapply_row = system.time(f_lapply_row(df)),
lapply_lapply = system.time(f_lapply_lapply(df)),
by_row = system.time(f_by_row(df)),
pmap = system.time(f_pmap(df)),
pmap_aslist = system.time(f_pmap_aslist(df)),
rowwise = system.time(f_rowwise(df))
)
# Get elapsed times
res <- lapply(res, `[[`, "elapsed")
# Add nrow to front
res <- c(nrow = nrow, res)
res
}
# Run the benchmarks for various size data
all_times <- lapply(1:5, function(n) {
run_benchmark(10^n)
})
# Convert to data frame
times <- lapply(all_times, as.data.frame)
times <- do.call(rbind, times)
knitr::kable(times)
nrow | apply | split_lapply | lapply_row | lapply_lapply | by_row | pmap | pmap_aslist | rowwise |
---|---|---|---|---|---|---|---|---|
1e+01 | 0.001 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.000 | 0.011 |
1e+02 | 0.001 | 0.007 | 0.006 | 0.004 | 0.001 | 0.002 | 0.000 | 0.011 |
1e+03 | 0.007 | 0.091 | 0.060 | 0.037 | 0.005 | 0.026 | 0.003 | 0.111 |
1e+04 | 0.062 | 0.939 | 0.858 | 0.397 | 0.064 | 0.266 | 0.017 | 1.134 |
1e+05 | 1.029 | 35.802 | 29.170 | 3.811 | 0.882 | 2.969 | 0.221 | 11.556 |
This plot shows the number of seconds needed to process n rows, for each method. Both the x and y use log scales, so each step along the x scale represents a 10x increase in number of rows, and each step along the y scale represents a 10x increase in time.
library(ggplot2)
library(scales)
# Convert to long format
times_long <- gather(times, method, seconds, -nrow)
# Set order of methods, for plots
times_long$method <- factor(times_long$method,
levels = c("apply", "split_lapply", "lapply_row", "lapply_lapply", "by_row",
"pmap", "pmap_aslist", "rowwise")
)
# Plot with log-log axes
ggplot(times_long, aes(x = nrow, y = seconds, colour = method)) +
geom_point() +
geom_line() +
annotation_logticks(sides = "trbl") +
theme_bw() +
scale_y_continuous(trans = log10_trans(),
breaks = trans_breaks("log10", function(x) 10^x),
labels = trans_format("log10", math_format(10^.x)),
minor_breaks = NULL) +
scale_x_continuous(trans = log10_trans(),
breaks = trans_breaks("log10", function(x) 10^x),
labels = trans_format("log10", math_format(10^.x)),
minor_breaks = NULL)