WHAT’S FACTOR ANALYSIS

Factor analysis can best be understood as a latent variable modeling paradigm in which a set of observed variables are the indicators of a latent variable. In this schema, the latent variable (e.g. intelligence) is of primary interest, but cannot be directly observed. However, it is theorized that the latent variable has a direct influence on each of the observed indicators (e.g. items on a scale, subscales in a battery of measures), so that they can in turn be used to gain insights into the latent variable. This idea is at the core of educational and psychological measurement of abilities. library(foreign)

EXPLORATORY FACTOR ANALYSIS

To begin, let us consider an example in which a researcher has collected data on achievement goal orientation using the 12-item Likert achievement goal scale. Each item has seven options ranging from “not at all like me” to “very true of me”. ##ITEMS The items appear below. - AGS1 = My goal is to completely master the material presented in my classes. (MAP)

The researcher would like to investigate the latent structure of achievement goal orientation, using the responses to these 12 items from 430 college students. The theory underlying the AGS states that there exist four distinct latent traits: mastery approach (MAP), mastery avoidant (MAV), performance approach (PAP),and performance avoidant (PAV)

FITTING EFA MODEL WITH FACTANAL

## 
## Call:
## factanal(x = ~ags1 + ags2 + ags3 + ags4 + ags5 + ags6 + ags7 +     ags8 + ags9 + ags10 + ags11 + ags12, factors = 4, rotation = "promax")
## 
## Uniquenesses:
##  ags1  ags2  ags3  ags4  ags5  ags6  ags7  ags8  ags9 ags10 ags11 ags12 
## 0.510 0.402 0.323 0.390 0.543 0.384 0.101 0.281 0.275 0.136 0.005 0.226 
## 
## Loadings:
##       Factor1 Factor2 Factor3 Factor4
## ags1           0.656                 
## ags2                   0.768         
## ags3   0.804                   0.126 
## ags4   0.777                  -0.112 
## ags5           0.532   0.201         
## ags6           0.789                 
## ags7           1.020  -0.118         
## ags8   0.801  -0.102   0.108   0.181 
## ags9   0.849                         
## ags10  0.933                         
## ags11  0.762                   0.573 
## ags12                  0.921         
## 
##                Factor1 Factor2 Factor3 Factor4
## SS loadings      4.069   2.396   1.525   0.397
## Proportion Var   0.339   0.200   0.127   0.033
## Cumulative Var   0.339   0.539   0.666   0.699
## 
## Factor Correlations:
##         Factor1 Factor2  Factor3  Factor4
## Factor1  1.0000  0.0706 -0.09984 -0.09467
## Factor2  0.0706  1.0000  0.09368 -0.64631
## Factor3 -0.0998  0.0937  1.00000 -0.00975
## Factor4 -0.0947 -0.6463 -0.00975  1.00000
## 
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 57.74 on 24 degrees of freedom.
## The p-value is 0.000132

for example, approximately 48.7% of the variance in item ags1 is not associated with the four retained factors.

##      ags1      ags2      ags3      ags4      ags5      ags6      ags7 
## 0.4896984 0.5976648 0.6772644 0.6095133 0.4571493 0.6156570 0.8990315 
##      ags8      ags9     ags10     ags11     ags12 
## 0.7187991 0.7250718 0.8641310 0.9950000 0.7744962

Thus, approximately 51% of the variance in ags1 is associated with the four factors, compared to 99.5% of the factor accounted for variance in ags8.

Finally, the chi-square goodness of fit test is the last portion of the output from factanal. For this model, the chi-square was 77.4 with 24 degrees of freedom, and a p-value of 0.000132. This value is well below our α of 0.05, leading us to reject the null hypothesis that the model adequately fits the data.

Including Plots

You can also embed plots, for example:

## Loading required package: MASS
## Loading required package: boot
## 
## Attaching package: 'boot'
## The following object is masked from 'package:psych':
## 
##     logit
## Loading required package: lattice
## 
## Attaching package: 'lattice'
## The following object is masked from 'package:boot':
## 
##     melanoma
## 
## Attaching package: 'nFactors'
## The following object is masked from 'package:lattice':
## 
##     parallel

FACTANAL DENGAN 3 FACTOR DAN PROMAX

## 
## Call:
## factanal(x = ~ags1 + ags2 + ags3 + ags4 + ags5 + ags6 + ags7 +     ags8 + ags9 + ags10 + ags11 + ags12, factors = 3, rotation = "promax")
## 
## Uniquenesses:
##  ags1  ags2  ags3  ags4  ags5  ags6  ags7  ags8  ags9 ags10 ags11 ags12 
## 0.513 0.410 0.307 0.433 0.543 0.384 0.103 0.281 0.270 0.187 0.295 0.217 
## 
## Loadings:
##       Factor1 Factor2 Factor3
## ags1           0.648         
## ags2                   0.756 
## ags3   0.836                 
## ags4   0.746                 
## ags5           0.531   0.201 
## ags6           0.793         
## ags7           1.018  -0.116 
## ags8   0.838  -0.118   0.119 
## ags9   0.852                 
## ags10  0.899                 
## ags11  0.838                 
## ags12                  0.926 
## 
##                Factor1 Factor2 Factor3
## SS loadings      4.199   2.404   1.519
## Proportion Var   0.350   0.200   0.127
## Cumulative Var   0.350   0.550   0.677
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1  1.0000  0.0594  0.0928
## Factor2  0.0594  1.0000  0.6424
## Factor3  0.0928  0.6424  1.0000
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 113.42 on 33 degrees of freedom.
## The p-value is 9.39e-11

FACTANAL DENGAN 2 FACTOR DAN PROMAX

## 
## Call:
## factanal(x = ~ags1 + ags2 + ags3 + ags4 + ags5 + ags6 + ags7 +     ags8 + ags9 + ags10 + ags11 + ags12, factors = 2, rotation = "promax")
## 
## Uniquenesses:
##  ags1  ags2  ags3  ags4  ags5  ags6  ags7  ags8  ags9 ags10 ags11 ags12 
## 0.476 0.698 0.315 0.432 0.524 0.385 0.213 0.292 0.273 0.187 0.297 0.678 
## 
## Loadings:
##       Factor1 Factor2
## ags1           0.724 
## ags2           0.548 
## ags3   0.831         
## ags4   0.748         
## ags5           0.692 
## ags6           0.781 
## ags7           0.889 
## ags8   0.844         
## ags9   0.848         
## ags10  0.900         
## ags11  0.841         
## ags12          0.561 
## 
##                Factor1 Factor2
## SS loadings      4.205   3.031
## Proportion Var   0.350   0.253
## Cumulative Var   0.350   0.603
## 
## Factor Correlations:
##         Factor1 Factor2
## Factor1  1.0000  0.0869
## Factor2  0.0869  1.0000
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 261.85 on 43 degrees of freedom.
## The p-value is 3.7e-33

FITTING EFA DENGAN FA DENGAN 4 FACTOR

## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate =
## rotate, : A Heywood case was detected. Examine the loadings carefully.
## Factor Analysis using method =  pa
## Call: fa(r = performance.data, nfactors = 4, rotate = "promax", residuals = TRUE, 
##     SMC = TRUE, fm = "pa")
## 
##  Warning: A Heywood case was detected. 
## Standardized loadings (pattern matrix) based upon correlation matrix
##         PA1   PA2   PA3   PA4   h2   u2 com
## ags1   0.02  0.71  0.05  0.08 0.54 0.46 1.0
## ags2  -0.03  0.00  0.79 -0.04 0.63 0.37 1.0
## ags3   0.84  0.04 -0.11  0.01 0.70 0.30 1.0
## ags4   0.71 -0.04  0.08 -0.28 0.67 0.33 1.3
## ags5  -0.04  0.56  0.18 -0.02 0.48 0.52 1.2
## ags6   0.04  0.74  0.01 -0.02 0.57 0.43 1.0
## ags7  -0.01  1.00 -0.11 -0.01 0.88 0.12 1.0
## ags8   0.88 -0.08  0.09  0.25 0.76 0.24 1.2
## ags9   0.84  0.07 -0.05 -0.05 0.73 0.27 1.0
## ags10  0.89  0.01  0.00 -0.08 0.82 0.18 1.0
## ags11  0.91 -0.01  0.00  0.32 0.81 0.19 1.2
## ags12  0.01 -0.04  0.88  0.01 0.74 0.26 1.0
## 
##                        PA1  PA2  PA3  PA4
## SS loadings           4.26 2.38 1.46 0.22
## Proportion Var        0.36 0.20 0.12 0.02
## Cumulative Var        0.36 0.55 0.68 0.69
## Proportion Explained  0.51 0.29 0.18 0.03
## Cumulative Proportion 0.51 0.80 0.97 1.00
## 
##  With factor correlations of 
##       PA1   PA2   PA3   PA4
## PA1  1.00  0.06  0.10 -0.19
## PA2  0.06  1.00  0.64 -0.13
## PA3  0.10  0.64  1.00 -0.03
## PA4 -0.19 -0.13 -0.03  1.00
## 
## Mean item complexity =  1.1
## Test of the hypothesis that 4 factors are sufficient.
## 
## The degrees of freedom for the null model are  66  and the objective function was  7.87 with Chi Square of  2504.87
## The degrees of freedom for the model are 24  and the objective function was  0.22 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic number of observations is  324 with the empirical chi square  14.8  with prob <  0.93 
## The total number of observations was  324  with MLE Chi Square =  68.07  with prob <  4.3e-06 
## 
## Tucker Lewis Index of factoring reliability =  0.95
## RMSEA index =  0.077  and the 90 % confidence intervals are  0.055 0.097
## BIC =  -70.67
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                 PA1  PA2  PA3  PA4
## Correlation of scores with factors             0.97 0.96 0.92 0.72
## Multiple R square of scores with factors       0.95 0.92 0.84 0.51
## Minimum correlation of possible factor scores  0.89 0.84 0.68 0.02

FITTING EFA DENGAN FA DENGAN 3 FACTOR

## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate =
## rotate, : A Heywood case was detected. Examine the loadings carefully.
## Factor Analysis using method =  pa
## Call: fa(r = performance.data, nfactors = 3, rotate = "promax", residuals = TRUE, 
##     SMC = TRUE, fm = "pa")
## 
##  Warning: A Heywood case was detected. 
## Standardized loadings (pattern matrix) based upon correlation matrix
##         PA1   PA2   PA3   h2   u2 com
## ags1   0.00  0.68  0.06 0.52 0.48 1.0
## ags2  -0.02  0.01  0.78 0.62 0.38 1.0
## ags3   0.85  0.05 -0.11 0.71 0.29 1.0
## ags4   0.74  0.03  0.04 0.56 0.44 1.0
## ags5  -0.04  0.56  0.18 0.48 0.52 1.2
## ags6   0.04  0.75  0.01 0.57 0.43 1.0
## ags7  -0.01  1.01 -0.11 0.88 0.12 1.0
## ags8   0.83 -0.12  0.12 0.71 0.29 1.1
## ags9   0.85  0.09 -0.06 0.73 0.27 1.0
## ags10  0.90  0.03 -0.01 0.82 0.18 1.0
## ags11  0.84 -0.08  0.04 0.71 0.29 1.0
## ags12  0.01 -0.04  0.89 0.74 0.26 1.0
## 
##                        PA1  PA2  PA3
## SS loadings           4.20 2.38 1.47
## Proportion Var        0.35 0.20 0.12
## Cumulative Var        0.35 0.55 0.67
## Proportion Explained  0.52 0.30 0.18
## Cumulative Proportion 0.52 0.82 1.00
## 
##  With factor correlations of 
##      PA1  PA2  PA3
## PA1 1.00 0.06 0.10
## PA2 0.06 1.00 0.64
## PA3 0.10 0.64 1.00
## 
## Mean item complexity =  1
## Test of the hypothesis that 3 factors are sufficient.
## 
## The degrees of freedom for the null model are  66  and the objective function was  7.87 with Chi Square of  2504.87
## The degrees of freedom for the model are 33  and the objective function was  0.37 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic number of observations is  324 with the empirical chi square  26.39  with prob <  0.79 
## The total number of observations was  324  with MLE Chi Square =  117.76  with prob <  1.9e-11 
## 
## Tucker Lewis Index of factoring reliability =  0.93
## RMSEA index =  0.091  and the 90 % confidence intervals are  0.072 0.107
## BIC =  -73
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                 PA1  PA2  PA3
## Correlation of scores with factors             0.97 0.96 0.92
## Multiple R square of scores with factors       0.94 0.92 0.84
## Minimum correlation of possible factor scores  0.88 0.85 0.68

FITTING EFA DENGAN FA DENGAN 2 FACTOR

## Factor Analysis using method =  pa
## Call: fa(r = performance.data, nfactors = 2, rotate = "promax", residuals = TRUE, 
##     SMC = TRUE, fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         PA1   PA2   h2   u2 com
## ags1  -0.01  0.72 0.52 0.48   1
## ags2   0.01  0.62 0.38 0.62   1
## ags3   0.84 -0.05 0.70 0.30   1
## ags4   0.74  0.06 0.56 0.44   1
## ags5  -0.05  0.71 0.50 0.50   1
## ags6   0.03  0.73 0.54 0.46   1
## ags7  -0.03  0.85 0.71 0.29   1
## ags8   0.84 -0.03 0.70 0.30   1
## ags9   0.85  0.03 0.72 0.28   1
## ags10  0.90  0.02 0.82 0.18   1
## ags11  0.84 -0.05 0.71 0.29   1
## ags12  0.05  0.63 0.41 0.59   1
## 
##                        PA1  PA2
## SS loadings           4.20 3.06
## Proportion Var        0.35 0.26
## Cumulative Var        0.35 0.61
## Proportion Explained  0.58 0.42
## Cumulative Proportion 0.58 1.00
## 
##  With factor correlations of 
##      PA1  PA2
## PA1 1.00 0.09
## PA2 0.09 1.00
## 
## Mean item complexity =  1
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  66  and the objective function was  7.87 with Chi Square of  2504.87
## The degrees of freedom for the model are 43  and the objective function was  0.86 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.06 
## 
## The harmonic number of observations is  324 with the empirical chi square  117.56  with prob <  7.5e-09 
## The total number of observations was  324  with MLE Chi Square =  272.45  with prob <  4.1e-35 
## 
## Tucker Lewis Index of factoring reliability =  0.855
## RMSEA index =  0.13  and the 90 % confidence intervals are  0.114 0.143
## BIC =  23.88
## Fit based upon off diagonal values = 0.98
## Measures of factor score adequacy             
##                                                 PA1  PA2
## Correlation of scores with factors             0.97 0.94
## Multiple R square of scores with factors       0.94 0.88
## Minimum correlation of possible factor scores  0.88 0.75

FITTING EFA DENGAN PCA

## 
## Loadings:
##       Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
## ags1         -0.335 -0.381 -0.268               -0.551  0.135       
## ags2         -0.523  0.434  0.200         0.695                     
## ags3  -0.403        -0.162  0.284 -0.564                0.618       
## ags4  -0.279                0.516  0.135        -0.225 -0.188  0.640
## ags5         -0.284 -0.222        -0.123 -0.132 -0.412 -0.185 -0.117
## ags6         -0.338 -0.410                       0.653         0.142
## ags7         -0.337 -0.400                       0.169              
## ags8  -0.482         0.205 -0.497  0.438                0.393       
## ags9  -0.333        -0.111  0.228                      -0.236 -0.701
## ags10 -0.431                0.236  0.439               -0.146 -0.123
## ags11 -0.466               -0.419 -0.486         0.109 -0.540  0.180
## ags12        -0.538  0.439        -0.108 -0.677                     
##       Comp.10 Comp.11 Comp.12
## ags1   0.565           0.134 
## ags2                         
## ags3          -0.123         
## ags4           0.359         
## ags5  -0.711  -0.215   0.259 
## ags6                   0.498 
## ags7  -0.143          -0.813 
## ags8  -0.275   0.208         
## ags9           0.513         
## ags10  0.197  -0.689         
## ags11  0.103                 
## ags12  0.157                 
## 
##                Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
## SS loadings     1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000
## Proportion Var  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083
## Cumulative Var  0.083  0.167  0.250  0.333  0.417  0.500  0.583  0.667
##                Comp.9 Comp.10 Comp.11 Comp.12
## SS loadings     1.000   1.000   1.000   1.000
## Proportion Var  0.083   0.083   0.083   0.083
## Cumulative Var  0.750   0.833   0.917   1.000