CTT punya Analisa

Ini hasil analisa data ujian matematika (benar/salah) yang diikuti 7130 orang dan 10 soal

## Loading required package: multilevel
## Loading required package: nlme
## Loading required package: MASS
## Warning in read.spss("mathg6.sav", to.data.frame = TRUE): mathg6.sav:
## Unrecognized record type 7, subtype 18 encountered in system file
## re-encoding from CP1252
## Warning in cor(x, TOT, use = "complete"): the standard deviation is zero
## Warning in cor(x, TOT.woi, use = "complete"): the standard deviation is
## zero
##          Sample.SD Item.total Item.Tot.woi Difficulty Discrimination
## V1       0.3722668  0.3856870    0.2304420      0.834      0.2942943
## V2       0.4544508  0.4822591    0.3026286      0.709      0.4774775
## V3       0.4511624  0.5212417    0.3497617      0.716      0.5315315
## V4       0.4420853  0.5516544    0.3898520      0.734      0.5345345
## V5       0.4977427  0.5613090    0.3778609      0.550      0.6516517
## V6       0.4539891  0.5835584    0.4235215      0.710      0.5915916
## V7       0.4950364  0.4840760    0.2865799      0.572      0.5555556
## V8       0.4549098  0.5610327    0.3957490      0.708      0.5615616
## V9       0.4506818  0.5894298    0.4320636      0.717      0.6036036
## V10      0.2159760  0.3702086    0.2821553      0.951      0.1201201
## filter_. 0.0000000         NA           NA      1.000      0.0000000
##          Item.Criterion Item.Reliab Item.Rel.woi Item.Validity
## V1                   NA   0.1435067   0.08574299            NA
## V2                   NA   0.2190534   0.13746102            NA
## V3                   NA   0.2350471   0.15772043            NA
## V4                   NA   0.2437564   0.17226164            NA
## V5                   NA   0.2792477   0.18798344            NA
## V6                   NA   0.2647967   0.19217800            NA
## V7                   NA   0.2395154   0.14179653            NA
## V8                   NA   0.2550916   0.17994009            NA
## V9                   NA   0.2655125   0.19462581            NA
## V10                  NA   0.0799162   0.06090832            NA
## filter_.             NA          NA           NA            NA
## [1] 0.6784851
##         LCL  ALPHA       UCL
## 1 0.7148683 0.7245 0.7339356

Analisa Rasch Model

## Loading required package: msm
## Loading required package: polycor
## Loading required package: mvtnorm
## Loading required package: sfsmisc
## Warning: glm.fit: algorithm did not converge
## 
## Call:
## rasch(data = mathg6, constraint = cbind(ncol(mathg6) + 1, 1))
## 
## Model Summary:
##    log.Lik      AIC      BIC
##  -5213.032 10448.06 10502.05
## 
## Coefficients:
##                    value    std.err   z.vals
## Dffclt.V1        -1.9386     0.0972 -19.9344
## Dffclt.V2        -1.0845     0.0830 -13.0694
## Dffclt.V3        -1.1256     0.0834 -13.4883
## Dffclt.V4        -1.2338     0.0848 -14.5535
## Dffclt.V5        -0.2437     0.0773  -3.1510
## Dffclt.V6        -1.0903     0.0830 -13.1294
## Dffclt.V7        -0.3534     0.0777  -4.5500
## Dffclt.V8        -1.0786     0.0829 -13.0093
## Dffclt.V9        -1.1315     0.0835 -13.5480
## Dffclt.V10       -3.4361     0.1555 -22.0901
## Dffclt.filter_. -26.5661 14120.6008  -0.0019
## Dscrmn            1.0000         NA       NA
## 
## Integration:
## method: Gauss-Hermite
## quadrature points: 21 
## 
## Optimization:
## Convergence: 0 
## max(|grad|): 7.5e-06 
## quasi-Newton: BFGS

## 
## Call:
## rasch(data = mathg6, constraint = cbind(ncol(mathg6) + 1, 1))
## 
## Total Information = 10
## Information in (-10, 10) = 10 (100%)
## Based on all the items

## 
## Item-Fit Statistics and P-values
## 
## Call:
## rasch(data = mathg6, constraint = cbind(ncol(mathg6) + 1, 1))
## 
## Alternative: Items do not fit the model
## Ability Categories: 10
## 
##              X^2 Pr(>X^2)
## V1       22.4174    0.001
## V2       32.2738  <0.0001
## V3       61.1025  <0.0001
## V4       66.4189  <0.0001
## V5       86.0035  <0.0001
## V6       89.5578  <0.0001
## V7       40.9280  <0.0001
## V8       70.7723  <0.0001
## V9       91.7241  <0.0001
## V10      58.0512  <0.0001
## filter_.  0.0000        1
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -2.4970 -1.1510 -0.5207 -0.6412 -0.1848  1.0680
## [1] 0.6120304

1PL Analisa

## Warning: glm.fit: algorithm did not converge
## 
## Call:
## rasch(data = mathg6)
## 
## Model Summary:
##    log.Lik      AIC      BIC
##  -5205.218 10434.44 10493.33
## 
## Coefficients:
##                    value    std.err   z.vals
## Dffclt.V1        -1.7117     0.1006 -17.0209
## Dffclt.V2        -0.9612     0.0790 -12.1658
## Dffclt.V3        -0.9974     0.0798 -12.4999
## Dffclt.V4        -1.0928     0.0820 -13.3286
## Dffclt.V5        -0.2189     0.0692  -3.1618
## Dffclt.V6        -0.9663     0.0791 -12.2138
## Dffclt.V7        -0.3159     0.0698  -4.5267
## Dffclt.V8        -0.9561     0.0789 -12.1174
## Dffclt.V9        -1.0026     0.0799 -12.5471
## Dffclt.V10       -3.0156     0.1663 -18.1324
## Dffclt.filter_. -22.6163 11233.0602  -0.0020
## Dscrmn            1.1746     0.0470  24.9953
## 
## Integration:
## method: Gauss-Hermite
## quadrature points: 21 
## 
## Optimization:
## Convergence: 0 
## max(|grad|): 0.0098 
## quasi-Newton: BFGS

## 
## Call:
## rasch(data = mathg6)
## 
## Total Information = 11.75
## Information in (-10, 10) = 11.75 (100%)
## Based on all the items
## 
## Call:
## rasch(data = mathg6)
## 
## Total Information = 11.75
## Information in (0, 10) = 2.83 (24.13%)
## Based on all the items

## 
## Item-Fit Statistics and P-values
## 
## Call:
## rasch(data = mathg6, constraint = cbind(ncol(mathg6) + 1, 1))
## 
## Alternative: Items do not fit the model
## Ability Categories: 10
## 
##              X^2 Pr(>X^2)
## V1       22.4174    0.001
## V2       32.2738  <0.0001
## V3       61.1025  <0.0001
## V4       66.4189  <0.0001
## V5       86.0035  <0.0001
## V6       89.5578  <0.0001
## V7       40.9280  <0.0001
## V8       70.7723  <0.0001
## V9       91.7241  <0.0001
## V10      58.0512  <0.0001
## filter_.  0.0000        1
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -2.4230 -1.1010 -0.5135 -0.6247 -0.1990  1.0510

2PL

## Warning: glm.fit: algorithm did not converge
## 
## Call:
## ltm(formula = mathg6 ~ z1)
## 
## Coefficients:
##                  Dffclt  Dscrmn
## V1        -2.355000e+00   0.762
## V2        -1.176000e+00   0.879
## V3        -1.035000e+00   1.111
## V4        -9.880000e-01   1.392
## V5        -2.160000e-01   1.219
## V6        -8.300000e-01   1.533
## V7        -4.130000e-01   0.805
## V8        -8.810000e-01   1.348
## V9        -8.390000e-01   1.614
## V10       -2.272000e+00   1.896
## filter_.   2.498988e+11   0.000
## 
## Log.Lik: -5179.223

## 
## Call:
## ltm(formula = mathg6 ~ z1)
## 
## Total Information = 12.56
## Information in (-10, 10) = 12.56 (100%)
## Based on all the items

## 
## Item-Fit Statistics and P-values
## 
## Call:
## ltm(formula = mathg6 ~ z1)
## 
## Alternative: Items do not fit the model
## Ability Categories: 10
## 
##              X^2 Pr(>X^2)
## V1       12.3701   0.1354
## V2       19.1640    0.014
## V3       30.0788   0.0002
## V4       30.7628   0.0002
## V5       52.0632  <0.0001
## V6       33.9417  <0.0001
## V7       21.4155   0.0061
## V8       36.9559  <0.0001
## V9       37.8002  <0.0001
## V10      44.1856  <0.0001
## filter_.  0.0000        1

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -2.4060 -1.0190 -0.5808 -0.6387 -0.2343  1.0220

3PL Analisa

## Warning: glm.fit: algorithm did not converge
## 
## Call:
## tpm(data = mathg6)
## 
## Model Summary:
##    log.Lik      AIC     BIC
##  -5178.772 10423.54 10585.5
## 
## Coefficients:
##                         value      std.err   z.vals
## Gussng.V1        1.700000e-03 4.600000e-02   0.0370
## Gussng.V2        1.000000e-04 7.100000e-03   0.0128
## Gussng.V3        3.672000e-01 9.450000e-02   3.8850
## Gussng.V4        1.700000e-01 1.733000e-01   0.9808
## Gussng.V5        0.000000e+00 3.800000e-03   0.0095
## Gussng.V6        6.490000e-02 1.643000e-01   0.3949
## Gussng.V7        1.127000e-01 1.953000e-01   0.5772
## Gussng.V8        0.000000e+00 1.000000e-03   0.0034
## Gussng.V9        3.854000e-01 3.530000e-02  10.9150
## Gussng.V10       1.000000e-03 2.710000e-02   0.0385
## Gussng.filter_.  5.000000e-02          NaN      NaN
## Dffclt.V1       -2.297900e+00 3.243000e-01  -7.0859
## Dffclt.V2       -1.161400e+00 1.426000e-01  -8.1459
## Dffclt.V3       -1.690000e-01 2.458000e-01  -0.6875
## Dffclt.V4       -6.732000e-01 3.499000e-01  -1.9238
## Dffclt.V5       -2.149000e-01 7.050000e-02  -3.0480
## Dffclt.V6       -7.244000e-01 3.031000e-01  -2.3900
## Dffclt.V7       -8.840000e-02 5.687000e-01  -0.1555
## Dffclt.V8       -8.650000e-01 8.630000e-02 -10.0186
## Dffclt.V9       -3.130000e-02          NaN      NaN
## Dffclt.V10      -2.299500e+00 2.107000e-01 -10.9138
## Dffclt.filter_.  2.843882e+09 5.868059e+21   0.0000
## Dscrmn.V1        7.834000e-01 1.207000e-01   6.4906
## Dscrmn.V2        8.895000e-01 1.108000e-01   8.0270
## Dscrmn.V3        1.870200e+00 5.234000e-01   3.5728
## Dscrmn.V4        1.606600e+00 3.819000e-01   4.2075
## Dscrmn.V5        1.172100e+00 1.240000e-01   9.4550
## Dscrmn.V6        1.569500e+00 3.210000e-01   4.8897
## Dscrmn.V7        9.198000e-01 2.866000e-01   3.2091
## Dscrmn.V8        1.368100e+00 1.452000e-01   9.4198
## Dscrmn.V9        1.724840e+01          NaN      NaN
## Dscrmn.V10       1.865600e+00 3.060000e-01   6.0977
## Dscrmn.filter_.  0.000000e+00 1.927519e+04   0.0000
## 
## Integration:
## method: Gauss-Hermite
## quadrature points: 21 
## 
## Optimization:
## Optimizer: optim (BFGS)
## Convergence: 0 
## max(|grad|): 0.028

## 
## Call:
## tpm(data = mathg6)
## 
## Total Information = 16.73
## Information in (-10, 10) = 16.73 (100%)
## Based on all the items
## 
## Call:
## tpm(data = mathg6)
## 
## Total Information = 16.73
## Information in (0, 10) = 6.29 (37.58%)
## Based on all the items

## 
## Item-Fit Statistics and P-values
## 
## Call:
## tpm(data = mathg6)
## 
## Alternative: Items do not fit the model
## Ability Categories: 10
## 
##               X^2 Pr(>X^2)
## V1        28.0417   0.0002
## V2        44.1994  <0.0001
## V3        51.9982  <0.0001
## V4        83.2102  <0.0001
## V5        73.5609  <0.0001
## V6        75.5793  <0.0001
## V7        38.7992  <0.0001
## V8        58.3654  <0.0001
## V9       123.9174  <0.0001
## V10       84.8073  <0.0001
## filter_.   0.0000        1

##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -2.26500 -0.94930 -0.25520 -0.46950  0.05524  0.99970

Perbandingan 3 Model

## 
## Call:
## rasch(data = mathg6)
## 
## Total Information = 11.75
## Information in (-10, 10) = 11.75 (100%)
## Based on all the items
## 
## Call:
## ltm(formula = mathg6 ~ z1)
## 
## Total Information = 12.56
## Information in (-10, 10) = 12.56 (100%)
## Based on all the items
## 
## Call:
## tpm(data = mathg6)
## 
## Total Information = 16.73
## Information in (-10, 10) = 16.73 (100%)
## Based on all the items

Anova 3 Model

## 
##  Likelihood Ratio Table
##                 AIC      BIC  log.Lik   LRT df p.value
## mathg6.1pl 10434.44 10493.33 -5205.22                 
## mathg6.2pl 10402.45 10510.42 -5179.22 51.99 10  <0.001
## 
##  Likelihood Ratio Table
##                 AIC      BIC  log.Lik LRT df p.value
## mathg6.2pl 10402.45 10510.42 -5179.22               
## mathg6.3pl 10423.54 10585.50 -5178.77 0.9 11       1