#/////////////////////////////////////////////////////////////////////////////
#   LIBRARIES AND CUSTOM FUNCTIONS
#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\


library(edgeR)
## Loading required package: limma
library(car)
library(gplots)
## KernSmooth 2.23 loaded
## Copyright M. P. Wand 1997-2009
## 
## Attaching package: 'gplots'
## 
## The following object is masked from 'package:stats':
## 
##     lowess
library(reshape)
library(stringr)
library(RColorBrewer)
library(limma)


# Create folder for results files
setwd("~/Projects/2013-10_HTL_RNASeq/RSEM/")



# Run once #################################################################################################
library(biomaRt)
ensMart<-useMart("ensembl")
ensembl_hs_mart <- useMart(biomart="ensembl", dataset="hsapiens_gene_ensembl")

ensembl_df <- getBM(attributes=c("ensembl_gene_id", "refseq_mrna",
                                 "hgnc_symbol","chromosome_name", "ensembl_transcript_id"),mart=ensembl_hs_mart)

head(ensembl_df)
##   ensembl_gene_id refseq_mrna hgnc_symbol chromosome_name
## 1 ENSG00000261657                SLC25A26     HG991_PATCH
## 2 ENSG00000261657                SLC25A26     HG991_PATCH
## 3 ENSG00000261657                SLC25A26     HG991_PATCH
## 4 ENSG00000261657                SLC25A26     HG991_PATCH
## 5 ENSG00000261657                SLC25A26     HG991_PATCH
## 6 ENSG00000223116                                      13
##   ensembl_transcript_id
## 1       ENST00000566782
## 2       ENST00000562780
## 3       ENST00000569579
## 4       ENST00000568242
## 5       ENST00000565530
## 6       ENST00000411184
# /Run once #################################################################################################



#/////////////////////////////////////////////////////////////////////////////
# Read in isform data ------------------------------------------------------------
#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\


## Read in the data making the row names the first column
counttable_isform <- read.table("~/Projects/2013-10_HTL_RNASeq/RSEM/RSEM.gencode18_isoforms.20140616.tsv", header=T, row.names=1)
#head(counttable_all)

colnames(counttable_isform)<-sapply(strsplit(colnames(counttable_isform), "\\."), `[`, 2)



#/////////////////////////////////////////////////////////////////////////////
# Bring in metadata
#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\


meta <- read.csv("~/Projects/2013-10_HTL_RNASeq/Metadata/20131020_phenotypes_from_intranet.csv",row.names=1,sep="\t")

#rownames(meta) <- paste("Sample",meta$SampleID,meta$Treatment,sep="_")

meta$Glycemic<-factor(recode(meta$Hba1c,"0:6='Normoglycemic';6:6.5='IGT';6.5:1000='T2D'"))
meta$Glycemic <- relevel(meta$Glycemic,ref="Normoglycemic")

meta$Donor <- rownames(meta)

#/////////////////////////////////////////////////////////////////////////////
# Bring in alfa/beta
#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

AlfaBeta <- read.csv("~/Projects//2013-09_Corrado_group/ins_glucagon.csv",sep="\t")

MetaAlfaBeta<-merge(meta,AlfaBeta,by.x="Donor",by.y="DONOR",all.x=T)
rownames(MetaAlfaBeta) <- MetaAlfaBeta$Donor

#/////////////////////////////////////////////////////////////////////////////
# Add  information for high glucose 
#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

highcl <-  colnames(counttable_isform)[grep("High",colnames(counttable_isform))]

#HighSamples <- sapply(strsplit(highcl, "\\_"), `[`, 1)
HighSamples <- substr(highcl,1,7)


MetaAlfaBeta$Treatment <- "Low"


MetaAlfaBeta$InGlucosePair <- 0
MetaAlfaBeta[HighSamples,]$InGlucosePair <- 1



MetaHigh <- MetaAlfaBeta[HighSamples,]
rownames(MetaHigh) <- highcl
MetaHigh$Treatment <- "High"

MetaComplete <- rbind(MetaAlfaBeta,MetaHigh)


MetaSeqSamples <- MetaComplete[intersect(colnames(counttable_isform),rownames(MetaComplete)),]

#/////////////////////////////////////////////////////////////////////////////
# Basic qc and remove bad samples
#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\


GoodSamples <- read.csv("/home/petter/Projects/2014-03-05_GlucoseTreatedIslets/Goodsamples.csv",row.names=1)
GoodSamples$y <- gsub("_","",GoodSamples$x)


CounttableQCisform <- counttable_isform[,as.character(GoodSamples$y)]
MetaSeqSamplesQC <- MetaSeqSamples[intersect(colnames(CounttableQCisform),rownames(MetaComplete)),]

setdiff(colnames(CounttableQCisform),rownames(MetaSeqSamplesQC))
## character(0)
MetaSeqSamplesQC$Treatment<-factor(MetaSeqSamplesQC$Treatment)
MetaSeqSamplesQC$Treatment <- relevel(MetaSeqSamplesQC$Treatment,ref="Low")

MetaSeqSamplesQC$Age <- as.numeric(substr(MetaSeqSamplesQC$Isolated,1,4))-MetaSeqSamplesQC$Year.of.birth  


# FILTER
library(genefilter)
## 
## Attaching package: 'genefilter'
## 
## The following object is masked from 'package:car':
## 
##     Anova
f1 <- kOverA(5, 1)
ffun <- filterfun(f1)
wh1 <- genefilter(CounttableQCisform, ffun)
table(wh1)
## wh1
##  FALSE   TRUE 
## 134319  62201
CounttableQCisform_expressionfilter <- CounttableQCisform[wh1,]

design <- model.matrix(~Donor+Treatment,data=MetaSeqSamplesQC)
fit <- lmFit(as.matrix(log2(CounttableQCisform_expressionfilter+.1)),design)
fit <- eBayes(fit)
tt_isform <- topTable(fit,coef="TreatmentHigh",n=16000000,sort="p")

table(Signifikant=tt_isform$adj.P.Val < .05,Uppreg=tt_isform$logFC>0)
##            Uppreg
## Signifikant FALSE  TRUE
##       FALSE 31327 25612
##       TRUE   3471  1791
tt_isform$ensembl_tid <- substr(rownames(tt_isform),1,15)
tt_isform$orginal_id <- rownames(tt_isform)

tt_isform = cbind(ensembl_df[match(tt_isform$ensembl_tid, ensembl_df$ensembl_transcript_id),],tt_isform)
#my_isforms_ann <- my_genes_ann[order(my_isforms_ann$meanexpression,decreasing=T),]

head(tt_isform,n=32)
##        ensembl_gene_id  refseq_mrna hgnc_symbol chromosome_name
## 210875 ENSG00000143333    NM_002928       RGS16               1
## 189782 ENSG00000108551    NM_016084       RASD1              17
## 187749 ENSG00000121351                     IAPP              12
## 88365  ENSG00000175426    NM_000439       PCSK1               5
## 57511  ENSG00000259796                                       14
## 138042 ENSG00000165621    NM_080818       OXGR1              13
## 187747 ENSG00000121351    NM_000415        IAPP              12
## 137045 ENSG00000154277    NM_004181       UCHL1               4
## 82770  ENSG00000172020    NM_002045       GAP43               3
## 211149 ENSG00000116690 NM_001127710        PRG4               1
## 79601  ENSG00000135447    NM_006741     PPP1R1A              12
## 81519  ENSG00000070985                    TRPM5              11
## 208679 ENSG00000139973    NM_031914       SYT16              14
## 187748 ENSG00000121351                     IAPP              12
## 187750 ENSG00000121351                     IAPP              12
## 79600  ENSG00000135447                  PPP1R1A              12
## 124211 ENSG00000101605    NM_019856       MYOM1              18
## 30271  ENSG00000155849 NM_001039459       ELMO1               7
## 77171  ENSG00000136750                     GAD2              10
## 171072 ENSG00000148120                   C9orf3               9
## 171077 ENSG00000148120                   C9orf3               9
## 193487 ENSG00000150687                   PRSS23              11
## 103380 ENSG00000198535    NM_207322      C2CD4A              15
## 80953  ENSG00000170577    NM_016932        SIX2               2
## 67530  ENSG00000179222    NM_006986      MAGED1               X
## 146118 ENSG00000104722    NM_005382        NEFM               8
## 95486  ENSG00000096433    NM_002224       ITPR3               6
## 185598 ENSG00000149571    NM_032531     KIRREL3              11
## 30268  ENSG00000155849    NM_130442       ELMO1               7
## 91418  ENSG00000167588 NM_001257199        GPD1              12
## 193486 ENSG00000150687    NM_007173      PRSS23              11
## 136625 ENSG00000091664    NM_020346     SLC17A6              11
##        ensembl_transcript_id   logFC AveExpr      t   P.Value adj.P.Val
## 210875       ENST00000367558  1.0343  3.8816 16.062 7.464e-16 4.643e-11
## 189782       ENST00000225688  1.0214  7.6748 13.947 2.725e-14 8.476e-10
## 187749       ENST00000537593  2.5318  3.7826 12.824 2.183e-13 4.393e-09
## 88365        ENST00000311106  1.2174  8.1324 12.690 2.825e-13 4.393e-09
## 57511        ENST00000568344  1.8346  4.1499 12.477 4.267e-13 5.022e-09
## 138042       ENST00000298440  1.2984  0.7611 12.412 4.845e-13 5.022e-09
## 187747       ENST00000240652  2.1565 10.3565 12.179 7.658e-13 6.141e-09
## 137045       ENST00000284440  0.6238  7.5659 12.164 7.898e-13 6.141e-09
## 82770        ENST00000305124  0.8874  2.0420 11.562 2.658e-12 1.689e-08
## 211149       ENST00000367485  0.9543  5.1050 11.552 2.716e-12 1.689e-08
## 79601        ENST00000257905  0.7422  7.8349 11.479 3.153e-12 1.783e-08
## 81519        ENST00000533881  2.5315 -0.2589 11.166 6.050e-12 3.136e-08
## 208679       ENST00000430451  1.8045  2.6787 11.000 8.596e-12 4.113e-08
## 187748       ENST00000542023  2.3579  3.0587 10.926 1.005e-11 4.467e-08
## 187750       ENST00000535428  2.5459  3.6270 10.683 1.693e-11 7.022e-08
## 79600        ENST00000547431  0.8859  1.0788 10.628 1.905e-11 7.408e-08
## 124211       ENST00000356443  1.3933  3.4424 10.423 2.977e-11 1.038e-07
## 30271        ENST00000396040  1.0322  4.8704 10.419 3.005e-11 1.038e-07
## 77171        ENST00000428517  1.2577  6.1718 10.172 5.183e-11 1.697e-07
## 171072       ENST00000473778  1.3337  1.4255  9.992 7.746e-11 2.365e-07
## 171077       ENST00000478603  1.6857  1.4868  9.979 7.983e-11 2.365e-07
## 193487       ENST00000532234 -1.3877  1.2939 -9.897 9.611e-11 2.717e-07
## 103380       ENST00000355522  0.9170  6.5410  9.823 1.136e-10 3.072e-07
## 80953        ENST00000303077 -0.9908  3.3297 -9.772 1.274e-10 3.203e-07
## 67530        ENST00000326587  0.5244  7.0397  9.768 1.287e-10 3.203e-07
## 146118       ENST00000437366  1.3151  2.8197  9.618 1.812e-10 4.335e-07
## 95486        ENST00000605930 -0.5314  5.4939 -9.599 1.893e-10 4.361e-07
## 185598       ENST00000525144  0.7077  2.7885  9.535 2.196e-10 4.832e-07
## 30268        ENST00000396045  0.6240  5.3735  9.523 2.257e-10 4.832e-07
## 91418        ENST00000301149  0.8830  2.7830  9.509 2.330e-10 4.832e-07
## 193486       ENST00000280258 -0.5911  4.3015 -9.466 2.576e-10 5.109e-07
## 136625       ENST00000263160  0.7762  2.7446  9.457 2.628e-10 5.109e-07
##            B     ensembl_tid        orginal_id
## 210875 24.75 ENST00000367558 ENST00000367558.5
## 189782 21.71 ENST00000225688 ENST00000225688.3
## 187749 19.89 ENST00000537593 ENST00000537593.1
## 88365  19.66 ENST00000311106 ENST00000311106.3
## 57511  19.30 ENST00000568344 ENST00000568344.1
## 138042 19.18 ENST00000298440 ENST00000298440.1
## 187747 18.78 ENST00000240652 ENST00000240652.3
## 137045 18.75 ENST00000284440 ENST00000284440.4
## 82770  17.66 ENST00000305124 ENST00000305124.6
## 211149 17.64 ENST00000367485 ENST00000367485.4
## 79601  17.51 ENST00000257905 ENST00000257905.8
## 81519  16.92 ENST00000533881 ENST00000533881.1
## 208679 16.60 ENST00000430451 ENST00000430451.2
## 187748 16.46 ENST00000542023 ENST00000542023.1
## 187750 15.98 ENST00000535428 ENST00000535428.1
## 79600  15.87 ENST00000547431 ENST00000547431.1
## 124211 15.46 ENST00000356443 ENST00000356443.4
## 30271  15.45 ENST00000396040 ENST00000396040.2
## 77171  14.95 ENST00000428517 ENST00000428517.2
## 171072 14.58 ENST00000473778 ENST00000473778.1
## 171077 14.56 ENST00000478603 ENST00000478603.1
## 193487 14.38 ENST00000532234 ENST00000532234.1
## 103380 14.23 ENST00000355522 ENST00000355522.5
## 80953  14.12 ENST00000303077 ENST00000303077.6
## 67530  14.11 ENST00000326587 ENST00000326587.7
## 146118 13.80 ENST00000437366 ENST00000437366.2
## 95486  13.76 ENST00000605930 ENST00000605930.1
## 185598 13.62 ENST00000525144 ENST00000525144.2
## 30268  13.59 ENST00000396045 ENST00000396045.3
## 91418  13.56 ENST00000301149 ENST00000301149.3
## 193486 13.47 ENST00000280258 ENST00000280258.5
## 136625 13.45 ENST00000263160 ENST00000263160.3
for (i in 1:10) {
  boxplot(unlist(CounttableQCisform_expressionfilter[tt_isform[i,"orginal_id"],])~MetaSeqSamplesQC$Treatment,las=2,ylab=tt_isform[i,"hgnc_symbol"])
}

plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1

#/////////////////////////////////////////////////////////////////////////////
# GENE
#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

## Read in the data making the row names the first column
counttable_gene <- read.table("~/Projects/2013-10_HTL_RNASeq/RSEM/RSEM.gene.20140618.tsv", header=T, row.names=1)
#head(counttable_gene)

colnames(counttable_gene)<-sapply(strsplit(colnames(counttable_gene), "\\."), `[`, 2)


CounttableQCGene <- counttable_gene[-1,as.character(GoodSamples$y)]
MetaSeqSamplesQCGene <- MetaSeqSamples[intersect(colnames(CounttableQCGene),rownames(MetaComplete)),]

setdiff(colnames(CounttableQCGene),rownames(MetaSeqSamplesQCGene))
## character(0)
MetaSeqSamplesQCGene$Treatment<-factor(MetaSeqSamplesQCGene$Treatment)
MetaSeqSamplesQCGene$Treatment <- relevel(MetaSeqSamplesQCGene$Treatment,ref="Low")

MetaSeqSamplesQCGene$Age <- as.numeric(substr(MetaSeqSamplesQCGene$Isolated,1,4))-MetaSeqSamplesQCGene$Year.of.birth  


# FILTER
library(genefilter)
f1 <- kOverA(5, 1)
ffun <- filterfun(f1)
wh1 <- genefilter(CounttableQCGene, ffun)
table(wh1)
## wh1
## FALSE  TRUE 
## 39330 18489
CounttableQCGene_expressionfilter <- CounttableQCGene[wh1,]

design <- model.matrix(~Donor+Treatment,data=MetaSeqSamplesQCGene)
fit <- lmFit(as.matrix(log2(CounttableQCGene_expressionfilter+.1)),design)
fit <- eBayes(fit)
ttGene <- topTable(fit,coef="TreatmentHigh",n=16000000,sort="p")

table(Signifikant=ttGene$adj.P.Val < .05,Uppreg=ttGene$logFC>0)
##            Uppreg
## Signifikant FALSE TRUE
##       FALSE  7363 5047
##       TRUE   4461 1618
ttGene$ensembl_tid <- substr(rownames(ttGene),1,15)

tt_gene_annotated = cbind(ensembl_df[match(ttGene$ensembl_tid, ensembl_df$ensembl_gene_id),],ttGene)
#my_genes_ann <- my_genes_ann[order(my_genes_ann$meanexpression,decreasing=T),]


merge <- merge(tt_isform,tt_gene_annotated,by="ensembl_gene_id",suffixes=c("_isoform","_gene"))

library(dplyr)
## 
## Attaching package: 'dplyr'
## 
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## 
## The following object is masked from '.env':
## 
##     n
## 
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
hitme <- filter(merge, adj.P.Val_isoform < 0.05 & adj.P.Val_gene > .5 )

dim(hitme)
## [1] 253  24
hitme<-hitme[order(hitme$adj.P.Val_isoform),]

head(hitme,n=20)
##     ensembl_gene_id refseq_mrna_isoform hgnc_symbol_isoform
## 18  ENSG00000070087           NM_053024                PFN2
## 58  ENSG00000108840                                   HDAC5
## 161 ENSG00000164941                                   INTS8
## 141 ENSG00000156113                                  KCNMA1
## 13  ENSG00000049449                                    RCN1
## 33  ENSG00000089248        NM_001034025               ERP29
## 232 ENSG00000254772                                   EEF1G
## 138 ENSG00000153914                                   SREK1
## 185 ENSG00000177963        NM_001286134               RIC8A
## 100 ENSG00000132142                                   ACACA
## 226 ENSG00000231312                                        
## 70  ENSG00000114867                                  EIF4G1
## 8   ENSG00000015568                                   RGPD5
## 116 ENSG00000137337                                    MDC1
## 96  ENSG00000131389                                  SLC6A6
## 95  ENSG00000131389                                  SLC6A6
## 201 ENSG00000196498                                   NCOR2
## 191 ENSG00000182979                                    MTA1
## 77  ENSG00000118363           NM_014752               SPCS2
## 125 ENSG00000141551                                  CSNK1D
##     chromosome_name_isoform ensembl_transcript_id_isoform logFC_isoform
## 18                        3               ENST00000452853       -0.3185
## 58                       17               ENST00000591714        0.7105
## 161                       8               ENST00000524333        0.3428
## 141                      10               ENST00000428546       -0.9235
## 13                       11               ENST00000506388        0.6765
## 33                       12               ENST00000455836       -0.5645
## 232                      11               ENST00000378019        0.5156
## 138                       5               ENST00000519259       -0.2822
## 185                      11               ENST00000526104        0.2513
## 100                      17               ENST00000588142        0.7431
## 226                       2               ENST00000449569       -0.4164
## 70                        3               ENST00000442406       -0.9828
## 8                         2               ENST00000493394       -0.4270
## 116                       6               ENST00000376405       -0.3522
## 96                        3               ENST00000427436       -0.8231
## 95                        3               ENST00000435095       -1.0247
## 201                      12               ENST00000420698       -0.6242
## 191                      14               ENST00000438610       -0.3338
## 77                       11               ENST00000263672        0.3660
## 125                      17               ENST00000584377        0.9105
##     AveExpr_isoform t_isoform P.Value_isoform adj.P.Val_isoform B_isoform
## 18           5.6610    -7.047       1.018e-07         3.726e-05     7.836
## 58           2.0049     6.385       5.924e-07         1.289e-04     6.157
## 161          2.8791     6.208       9.553e-07         1.851e-04     5.700
## 141          0.3108    -5.842       2.583e-06         3.632e-04     4.749
## 13          -0.5239     5.831       2.662e-06         3.677e-04     4.720
## 33           4.1997    -5.806       2.851e-06         3.798e-04     4.654
## 232          2.2471     5.791       2.968e-06         3.911e-04     4.616
## 138          1.0489    -5.635       4.560e-06         5.234e-04     4.205
## 185          4.1844     5.602       4.986e-06         5.480e-04     4.119
## 100          1.0076     5.514       6.358e-06         6.647e-04     3.887
## 226          0.9772    -5.458       7.414e-06         7.390e-04     3.740
## 70          -0.2125    -5.434       7.921e-06         7.771e-04     3.677
## 8            1.3883    -5.354       9.860e-06         9.082e-04     3.467
## 116          2.4248    -5.332       1.049e-05         9.439e-04     3.408
## 96           2.2197    -5.131       1.826e-05         1.380e-03     2.878
## 95           0.5088    -5.038       2.361e-05         1.617e-03     2.632
## 201         -0.5692    -4.939       3.106e-05         1.973e-03     2.370
## 191          2.8975    -4.926       3.215e-05         2.026e-03     2.337
## 77           5.0606     4.917       3.303e-05         2.058e-03     2.312
## 125          3.0814     4.916       3.310e-05         2.061e-03     2.310
##     ensembl_tid_isoform        orginal_id refseq_mrna_gene
## 18      ENST00000452853 ENST00000452853.2        NM_053024
## 58      ENST00000591714 ENST00000591714.1                 
## 161     ENST00000524333 ENST00000524333.1                 
## 141     ENST00000428546 ENST00000428546.1     NM_001271518
## 13      ENST00000506388 ENST00000506388.2                 
## 33      ENST00000455836 ENST00000455836.1        NM_006817
## 232     ENST00000378019 ENST00000378019.3        NM_001404
## 138     ENST00000519259 ENST00000519259.1                 
## 185     ENST00000526104 ENST00000526104.1     NM_001286134
## 100     ENST00000588142 ENST00000588142.1        NM_198834
## 226     ENST00000449569 ENST00000449569.1                 
## 70      ENST00000442406 ENST00000442406.1        NM_198241
## 8       ENST00000493394 ENST00000493394.1        NM_032260
## 116     ENST00000376405 ENST00000376405.2        NM_014641
## 96      ENST00000427436 ENST00000427436.1                 
## 95      ENST00000435095 ENST00000435095.1                 
## 201     ENST00000420698 ENST00000420698.1                 
## 191     ENST00000438610 ENST00000438610.1        NM_004689
## 77      ENST00000263672 ENST00000263672.6        NM_014752
## 125     ENST00000584377 ENST00000584377.1                 
##     hgnc_symbol_gene chromosome_name_gene ensembl_transcript_id_gene
## 18              PFN2                    3            ENST00000452853
## 58             HDAC5                   17            ENST00000225983
## 161            INTS8                    8            ENST00000522171
## 141           KCNMA1                   10            ENST00000604624
## 13              RCN1                   11            ENST00000530348
## 33             ERP29                   12            ENST00000261735
## 232            EEF1G                   11            ENST00000329251
## 138            SREK1                    5            ENST00000521691
## 185            RIC8A                   11            ENST00000526104
## 100            ACACA                   17            ENST00000353139
## 226                                     2            ENST00000426083
## 70            EIF4G1                    3            ENST00000346169
## 8              RGPD5                    2            ENST00000393283
## 116             MDC1                    6            ENST00000376406
## 96            SLC6A6                    3            ENST00000490683
## 95            SLC6A6                    3            ENST00000490683
## 201            NCOR2                   12            ENST00000405201
## 191             MTA1                   14            ENST00000331320
## 77             SPCS2                   11            ENST00000263672
## 125           CSNK1D                   17            ENST00000584672
##     logFC_gene AveExpr_gene   t_gene P.Value_gene adj.P.Val_gene B_gene
## 18  -0.0109072        7.153 -0.29471       0.7703         0.8506 -6.692
## 58   0.0270983        5.947  0.62923       0.5341         0.6604 -6.535
## 161  0.0302609        4.980  0.71990       0.4773         0.6098 -6.474
## 141  0.0352283        5.372  0.57964       0.5666         0.6886 -6.565
## 13   0.0172743        6.599  0.60208       0.5518         0.6761 -6.552
## 33   0.0264859        7.578  0.81332       0.4227         0.5602 -6.402
## 232 -0.0126942       10.194 -0.52277       0.6051         0.7220 -6.597
## 138 -0.0098432        5.802 -0.14792       0.8834         0.9287 -6.725
## 185  0.0069339        5.667  0.21089       0.8344         0.8947 -6.713
## 100 -0.0032013        4.577 -0.07886       0.9377         0.9617 -6.733
## 226  0.0233143        3.634  0.39171       0.6981         0.7949 -6.658
## 70   0.0048792        7.071  0.11375       0.9102         0.9449 -6.729
## 8   -0.0047076        3.468 -0.02804       0.9778         0.9872 -6.735
## 116 -0.0096035        4.226 -0.19600       0.8460         0.9020 -6.716
## 96   0.0101283        6.199  0.15482       0.8780         0.9252 -6.724
## 95   0.0101283        6.199  0.15482       0.8780         0.9252 -6.724
## 201 -0.0418395        5.996 -0.62517       0.5367         0.6626 -6.538
## 191 -0.0375801        5.605 -0.79211       0.4347         0.5711 -6.419
## 77   0.0167471        7.577  0.46165       0.6478         0.7562 -6.627
## 125 -0.0007099        7.036 -0.01974       0.9844         0.9912 -6.736
##     ensembl_tid_gene
## 18   ENSG00000070087
## 58   ENSG00000108840
## 161  ENSG00000164941
## 141  ENSG00000156113
## 13   ENSG00000049449
## 33   ENSG00000089248
## 232  ENSG00000254772
## 138  ENSG00000153914
## 185  ENSG00000177963
## 100  ENSG00000132142
## 226  ENSG00000231312
## 70   ENSG00000114867
## 8    ENSG00000015568
## 116  ENSG00000137337
## 96   ENSG00000131389
## 95   ENSG00000131389
## 201  ENSG00000196498
## 191  ENSG00000182979
## 77   ENSG00000118363
## 125  ENSG00000141551
for (i in 1:5) {

  par(mfrow=c(2,1))
  boxplot(unlist(CounttableQCGene_expressionfilter[hitme[i,"ensembl_gene_id"],])~MetaSeqSamplesQCGene$Treatment,
          main=paste(hitme[i,"ensembl_gene_id"],"\n Adj p-val",prettyNum(hitme[i,"adj.P.Val_gene"],digits=2)),
          ylab=hitme[i,"hgnc_symbol_isoform"])
  boxplot(unlist(CounttableQCisform_expressionfilter[hitme[i,"orginal_id"],])~MetaSeqSamplesQCGene$Treatment,
          main=paste(hitme[i,"ensembl_tid_isoform"],"\n",prettyNum(hitme[i,"adj.P.Val_isoform"],digits=2)))

}

plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1