This is an introduction file for paper about Wickepin biomass process.
original images in “24_03-11” and “28_09-10”
original images were atmosphericed by Quick atmospheric method in ENVI
for this study the data was cliped to sites area (Folder “data/”)
the images were classificated by Ecognition 8.4 (Folder “yikang/”)
all the result files are saved in (Folder “results/”)
all the result images are saved in (Folder “images/”)
library(caTools)
library(raster)
#library(ncdf)
library(plyr)
library(ggplot2)
library(lattice)
library(reshape2)
library(hydroGOF)
library(Hmisc)
data_11<-read.ENVI("data/W_24_03-11-AC")
class_11<-read.ENVI("yikang/class_saltbush_dissolve") # vegetation classifation result based on ecognition
data_10<-read.ENVI("data/W_28_09-10-AC")
site_buf<-read.ENVI("data/W_Site_buffer_round") # site boundary
AGB<-read.csv("data/AGB.csv",header = T) # biomass data
vars<-c("BLUE","GREEN","RED","NIR", "NDVI","RVI","SAVI","GCC","EG","FVC","Rveg")
# c("BLUE","GREEN","RED","NIR", "NDVI","mNDVI","RVI","REEI","EVI", "SAVI","MSAVI","OSAVI","mARI1","mARI2","FVC","Rveg")
data_11_f<-data.frame(ID=c(1:(nrow(data_11)*ncol(data_11))),BLUE=as.integer(data_11[,,1]),GREEN=as.integer(data_11[,,2]),RED=as.integer(data_11[,,3]),NIR=as.integer(data_11[,,4]))
summary(data_11_f)
## ID BLUE GREEN RED
## Min. : 1 Min. : 162 Min. : 97 Min. : 67
## 1st Qu.: 257078 1st Qu.:1162 1st Qu.:1397 1st Qu.:1730
## Median : 514156 Median :1388 Median :1611 Median :1986
## Mean : 514156 Mean :1429 Mean :1605 Mean :1973
## 3rd Qu.: 771233 3rd Qu.:1634 3rd Qu.:1861 3rd Qu.:2264
## Max. :1028310 Max. :4620 Max. :2749 Max. :3532
## NIR
## Min. : 278
## 1st Qu.:2248
## Median :2484
## Mean :2538
## 3rd Qu.:2787
## Max. :5725
data_10_f<-data.frame(ID=c(1:(nrow(data_10)*ncol(data_10))),BLUE=as.integer(data_10[,,1]),GREEN=as.integer(data_10[,,2]),RED=as.integer(data_10[,,3]),NIR=as.integer(data_10[,,4]))
summary(data_10_f)
## ID BLUE GREEN RED
## Min. : 1 Min. : 190 Min. : 283 Min. : 300
## 1st Qu.: 257078 1st Qu.: 750 1st Qu.:1116 1st Qu.:1214
## Median : 514156 Median : 896 Median :1297 Median :1424
## Mean : 514156 Mean :1043 Mean :1362 Mean :1591
## 3rd Qu.: 771233 3rd Qu.:1258 3rd Qu.:1725 3rd Qu.:1983
## Max. :1028310 Max. :3007 Max. :2300 Max. :3006
## NIR
## Min. : 485
## 1st Qu.:1750
## Median :1944
## Mean :2028
## 3rd Qu.:2302
## Max. :4300
site_info<-data.frame(ID=c(1:(nrow(site_buf)*ncol(site_buf))),Site=as.integer(site_buf),VEG=as.integer(class_11))
summary(site_info)
## ID Site VEG
## Min. : 1 Min. : 0.0 Min. :0.0000
## 1st Qu.: 257078 1st Qu.:255.0 1st Qu.:0.0000
## Median : 514156 Median :255.0 Median :0.0000
## Mean : 514156 Mean :214.1 Mean :0.1917
## 3rd Qu.: 771233 3rd Qu.:255.0 3rd Qu.:0.0000
## Max. :1028310 Max. :255.0 Max. :1.0000
Here the round boundary for each site was used. This boundary was built by using the central point of each site as the Circ+pt and 10cm as the radius.
Therefore, for each site, there is 1250 pixels totally.
The number of pixels for vegetation in each site can be calculated by below code.
.linshi<-melt(site_info[site_info$VEG==1,-3],id=c(2))
N_pixels<-dcast(.linshi,Site~variable,length)
names(N_pixels)[2]<-c("Veg_pixels")
attach(data_11_f)
#---VIs
# NDVI (NIR-RED/NIR+RED)
data_11_f$NDVI<-(NIR-RED)/(NIR+RED)
# mNDVI (NIR-RED/NIR+RED)
data_11_f$mNDVI<-(NIR-RED)/((NIR+RED)-2*BLUE)
#RVI (NIR/RED)
data_11_f$RVI<-(NIR/RED)
data_11_f$REEI<-(RED/NIR)
#EVI (2.5*(NIR-RED)/(NIR+6RED-7.5blue+1))
data_11_f$EVI<-2.5*(NIR-RED)/(NIR+6*RED-7.5*BLUE+1)
#SAVI (1+0.5)(NIR-RED)/(NIR+RED+0.5)
data_11_f$SAVI<-1.5*(NIR-RED)/(NIR+RED+0.5)
# MSAVI
data_11_f$MSAVI<-(2*(NIR+1)-sqrt((2*NIR+1)^2-8*(NIR-RED)))/2
#OSAVI
data_11_f$OSAVI<-(NIR-RED)/(NIR+RED+0.16)
# mARI1
data_11_f$mARI1=(GREEN-1)/(RED-1)
# mARI2
data_11_f$mARI2=NIR*(GREEN-1)/(RED-1)
#GCC
data_11_f$GCC=GREEN/(GREEN+RED+BLUE)
#EG
data_11_f$EG=2*GREEN-RED-BLUE
detach(data_11_f)
summary(data_11_f)
## ID BLUE GREEN RED
## Min. : 1 Min. : 162 Min. : 97 Min. : 67
## 1st Qu.: 257078 1st Qu.:1162 1st Qu.:1397 1st Qu.:1730
## Median : 514156 Median :1388 Median :1611 Median :1986
## Mean : 514156 Mean :1429 Mean :1605 Mean :1973
## 3rd Qu.: 771233 3rd Qu.:1634 3rd Qu.:1861 3rd Qu.:2264
## Max. :1028310 Max. :4620 Max. :2749 Max. :3532
## NIR NDVI mNDVI RVI
## Min. : 278 Min. :-0.2821 Min. :-1089.0000 Min. : 0.560
## 1st Qu.:2248 1st Qu.: 0.0830 1st Qu.: 0.2324 1st Qu.: 1.181
## Median :2484 Median : 0.1003 Median : 0.2992 Median : 1.223
## Mean :2538 Mean : 0.1303 Mean : Inf Mean : 1.348
## 3rd Qu.:2787 3rd Qu.: 0.1291 3rd Qu.: 0.3790 3rd Qu.: 1.297
## Max. :5725 Max. : 0.8250 Max. : Inf Max. :10.430
## REEI EVI SAVI MSAVI
## Min. :0.09587 Min. :-4160.000 Min. :-0.4229 Min. :-0.2840
## 1st Qu.:0.77128 1st Qu.: 0.227 1st Qu.: 0.1245 1st Qu.: 0.6533
## Median :0.81776 Median : 0.327 Median : 0.1504 Median : 0.6822
## Mean :0.78012 Mean : Inf Mean : 0.1955 Mean : 0.7198
## 3rd Qu.:0.84672 3rd Qu.: 0.460 3rd Qu.: 0.1937 3rd Qu.: 0.7287
## Max. :1.78571 Max. : Inf Max. : 1.2374 Max. : 1.4041
## OSAVI mARI1 mARI2 GCC
## Min. :-0.2820 Min. :0.2261 Min. : 117.8 Min. :0.1181
## 1st Qu.: 0.0830 1st Qu.:0.7784 1st Qu.:1809.6 1st Qu.:0.3159
## Median : 0.1003 Median :0.8217 Median :2025.9 Median :0.3227
## Mean : 0.1303 Mean :0.8188 Mean :2081.7 Mean :0.3221
## 3rd Qu.: 0.1291 3rd Qu.:0.8548 3rd Qu.:2323.3 3rd Qu.:0.3286
## Max. : 0.8250 Max. :1.9721 Max. :8125.0 Max. :0.5201
## EG
## Min. :-3023.0
## 1st Qu.: -256.0
## Median : -157.0
## Mean : -192.5
## 3rd Qu.: -68.0
## Max. : 1094.0
attach(data_10_f)
#---VIs
# NDVI (NIR-RED/NIR+RED)
data_10_f$NDVI<-(NIR-RED)/(NIR+RED)
# mNDVI (NIR-RED/NIR+RED)
data_10_f$mNDVI<-(NIR-RED)/((NIR+RED)-2*BLUE)
#RVI (NIR/RED)
data_10_f$RVI<-(NIR/RED)
data_10_f$REEI<-(RED/NIR)
#EVI (2.5*(NIR-RED)/(NIR+6RED-7.5blue+1))
data_10_f$EVI<-2.5*(NIR-RED)/(NIR+6*RED-7.5*BLUE+1)
#SAVI (1+0.5)(NIR-RED)/(NIR+RED+0.5)
data_10_f$SAVI<-1.5*(NIR-RED)/(NIR+RED+0.5)
# MSAVI
data_10_f$MSAVI<-(2*(NIR+1)-sqrt((2*NIR+1)^2-8*(NIR-RED)))/2
#OSAVI
data_10_f$OSAVI<-(NIR-RED)/(NIR+RED+0.16)
# mARI1
data_10_f$mARI1=(GREEN-1)/(RED-1)
# mARI2
data_10_f$mARI2=NIR*(GREEN-1)/(RED-1)
#GCC
data_10_f$GCC=GREEN/(GREEN+RED+BLUE)
#EG
data_10_f$EG=2*GREEN-RED-BLUE
detach(data_10_f)
summary(data_10_f)
## ID BLUE GREEN RED
## Min. : 1 Min. : 190 Min. : 283 Min. : 300
## 1st Qu.: 257078 1st Qu.: 750 1st Qu.:1116 1st Qu.:1214
## Median : 514156 Median : 896 Median :1297 Median :1424
## Mean : 514156 Mean :1043 Mean :1362 Mean :1591
## 3rd Qu.: 771233 3rd Qu.:1258 3rd Qu.:1725 3rd Qu.:1983
## Max. :1028310 Max. :3007 Max. :2300 Max. :3006
## NIR NDVI mNDVI RVI
## Min. : 485 Min. :-0.17037 Min. : -Inf Min. :0.7089
## 1st Qu.:1750 1st Qu.: 0.05948 1st Qu.:0.1602 1st Qu.:1.1265
## Median :1944 Median : 0.13032 Median :0.2925 Median :1.2997
## Mean :2028 Mean : 0.13530 Mean : NaN Mean :1.3604
## 3rd Qu.:2302 3rd Qu.: 0.18077 3rd Qu.:0.3889 3rd Qu.:1.4413
## Max. :4300 Max. : 0.78229 Max. : Inf Max. :8.1866
## REEI EVI SAVI MSAVI
## Min. :0.1222 Min. :-1195.0000 Min. :-0.2555 Min. :0.08963
## 1st Qu.:0.6938 1st Qu.: 0.1472 1st Qu.: 0.0892 1st Qu.:0.61225
## Median :0.7694 Median : 0.2985 Median : 0.1954 Median :0.73054
## Mean :0.7758 Mean : 0.3314 Mean : 0.2029 Mean :0.72418
## 3rd Qu.:0.8877 3rd Qu.: 0.4365 3rd Qu.: 0.2711 3rd Qu.:0.80612
## Max. :1.4107 Max. : 1130.0000 Max. : 1.1733 Max. :1.37783
## OSAVI mARI1 mARI2 GCC
## Min. :-0.17036 Min. :0.3145 Min. : 240.2 Min. :0.1887
## 1st Qu.: 0.05947 1st Qu.:0.7988 1st Qu.:1567.7 1st Qu.:0.3319
## Median : 0.13031 Median :0.8915 Median :1755.2 Median :0.3544
## Mean : 0.13529 Mean :0.8829 Mean :1773.8 Mean :0.3476
## 3rd Qu.: 0.18076 3rd Qu.:0.9518 3rd Qu.:1939.7 3rd Qu.:0.3658
## Max. : 0.78226 Max. :2.3018 Max. :6083.2 Max. :0.5552
## EG
## Min. :-1917.00
## 1st Qu.: -18.00
## Median : 215.00
## Mean : 90.46
## 3rd Qu.: 323.00
## Max. : 1578.00
data_11_f<-cbind(site_info,data_11_f[-1])
data_10_f<-cbind(site_info,data_10_f[-1])
# delete data not in study site and soil pixels
data_11_f$Site[data_11_f$Site>25 |data_11_f$Site<1]<-NA
data_10_f$Site[data_10_f$Site>25 |data_10_f$Site<1]<-NA
#data_11_f$VEG[data_11_f$VEG==0]<-NA
data_11_f<-na.omit(data_11_f)
data_10_f<-na.omit(data_10_f)
summary(data_11_f)
## ID Site VEG BLUE
## Min. : 52551 Min. : 1.0 Min. :0.0000 Min. : 288
## 1st Qu.:360487 1st Qu.: 6.0 1st Qu.:0.0000 1st Qu.: 883
## Median :638706 Median :13.0 Median :1.0000 Median :1151
## Mean :574939 Mean :12.5 Mean :0.5352 Mean :1142
## 3rd Qu.:788819 3rd Qu.:19.0 3rd Qu.:1.0000 3rd Qu.:1359
## Max. :996072 Max. :24.0 Max. :1.0000 Max. :2628
## GREEN RED NIR NDVI
## Min. : 239 Min. : 289 Min. : 491 Min. :-0.08606
## 1st Qu.:1067 1st Qu.:1258 1st Qu.:2049 1st Qu.: 0.10940
## Median :1391 Median :1642 Median :2382 Median : 0.16009
## Mean :1362 Mean :1609 Mean :2424 Mean : 0.20334
## 3rd Qu.:1628 3rd Qu.:1919 3rd Qu.:2772 3rd Qu.: 0.26220
## Max. :2490 Max. :3186 Max. :5078 Max. : 0.77447
## mNDVI RVI REEI EVI
## Min. :-39.0000 Min. :0.8415 Min. :0.1271 Min. :-143.1818
## 1st Qu.: 0.3010 1st Qu.:1.2457 1st Qu.:0.5845 1st Qu.: 0.3253
## Median : 0.4007 Median :1.3812 Median :0.7240 Median : 0.4721
## Mean : 0.4422 Mean :1.5997 Mean :0.6787 Mean : 0.6277
## 3rd Qu.: 0.5714 3rd Qu.:1.7108 3rd Qu.:0.8028 3rd Qu.: 0.8004
## Max. : 4.6471 Max. :7.8678 Max. :1.1883 Max. : 270.0000
## SAVI MSAVI OSAVI mARI1
## Min. :-0.1290 Min. :0.3119 Min. :-0.08605 Min. :0.4662
## 1st Qu.: 0.1641 1st Qu.:0.6972 1st Qu.: 0.10940 1st Qu.:0.8021
## Median : 0.2401 Median :0.7760 Median : 0.16009 Median :0.8426
## Mean : 0.3050 Mean :0.8213 Mean : 0.20333 Mean :0.8489
## 3rd Qu.: 0.3932 3rd Qu.:0.9154 3rd Qu.: 0.26219 3rd Qu.:0.8910
## Max. : 1.1615 Max. :1.3729 Max. : 0.77443 Max. :1.4313
## mARI2 GCC EG
## Min. : 299.2 Min. :0.2153 Min. :-1034.00
## 1st Qu.:1700.7 1st Qu.:0.3212 1st Qu.: -152.00
## Median :2015.3 Median :0.3299 Median : -43.00
## Mean :2076.5 Mean :0.3309 Mean : -26.72
## 3rd Qu.:2418.3 3rd Qu.:0.3417 3rd Qu.: 97.00
## Max. :5524.6 Max. :0.4268 Max. : 791.00
summary(data_10_f)
## ID Site VEG BLUE
## Min. : 52551 Min. : 1.0 Min. :0.0000 Min. : 275.0
## 1st Qu.:360487 1st Qu.: 6.0 1st Qu.:0.0000 1st Qu.: 634.0
## Median :638706 Median :13.0 Median :1.0000 Median : 785.0
## Mean :574939 Mean :12.5 Mean :0.5352 Mean : 799.3
## 3rd Qu.:788819 3rd Qu.:19.0 3rd Qu.:1.0000 3rd Qu.: 914.0
## Max. :996072 Max. :24.0 Max. :1.0000 Max. :2005.0
## GREEN RED NIR NDVI
## Min. : 383 Min. : 400 Min. : 682 Min. :-0.04076
## 1st Qu.: 928 1st Qu.:1027 1st Qu.:1627 1st Qu.: 0.12136
## Median :1168 Median :1267 Median :1867 Median : 0.16111
## Mean :1164 Mean :1263 Mean :1891 Mean : 0.19976
## 3rd Qu.:1352 3rd Qu.:1468 3rd Qu.:2120 3rd Qu.: 0.24244
## Max. :2199 Max. :2679 Max. :3697 Max. : 0.70636
## mNDVI RVI REEI EVI
## Min. :-0.07901 Min. :0.9217 Min. :0.1721 Min. :-8.0980
## 1st Qu.: 0.25741 1st Qu.:1.2762 1st Qu.:0.6097 1st Qu.: 0.2499
## Median : 0.35241 Median :1.3841 Median :0.7225 Median : 0.3802
## Mean : 0.39268 Mean :1.5671 Mean :0.6802 Mean : 0.4939
## 3rd Qu.: 0.50699 3rd Qu.:1.6400 3rd Qu.:0.7835 3rd Qu.: 0.6458
## Max. : 1.23284 Max. :5.8110 Max. :1.0850 Max. : 8.5783
## SAVI MSAVI OSAVI mARI1
## Min. :-0.06112 Min. :0.4151 Min. :-0.04075 Min. :0.4095
## 1st Qu.: 0.18201 1st Qu.:0.7164 1st Qu.: 0.12135 1st Qu.:0.8480
## Median : 0.24163 Median :0.7775 Median : 0.16110 Median :0.9162
## Mean : 0.29959 Mean :0.8197 Mean : 0.19975 Mean :0.9269
## 3rd Qu.: 0.36357 3rd Qu.:0.8902 3rd Qu.: 0.24242 3rd Qu.:1.0027
## Max. : 1.05938 Max. :1.3279 Max. : 0.70632 Max. :1.5722
## mARI2 GCC EG
## Min. : 408.7 Min. :0.2191 Min. :-794.0
## 1st Qu.:1436.1 1st Qu.:0.3476 1st Qu.: 131.0
## Median :1705.4 Median :0.3606 Median : 263.0
## Mean :1771.7 Mean :0.3604 Mean : 265.9
## 3rd Qu.:2063.6 3rd Qu.:0.3750 3rd Qu.: 401.0
## Max. :4853.9 Max. :0.4616 Max. :1236.0
FVC is derived from NDVI, and to help distinguish vegetation and soil pixels NDVI values at 5% and 95% of the study area were selected as NDVIsoil and NDVIveg, respectively (Wu et al. 2004). Rveg is simply the proportion (%) of vegetation pixels compared to the total number of pixels.
#FVC=(NDVI-NDVIsoil)/(NDVIveg-NDVIsoil)
data_11_f$FVC<-(data_11_f$NDVI-quantile(data_11_f$NDVI, 0.05))/(quantile(data_11_f$NDVI, 0.95)-quantile(data_11_f$NDVI, 0.05))
data_10_f$FVC<-(data_10_f$NDVI-quantile(data_10_f$NDVI, 0.05))/(quantile(data_10_f$NDVI, 0.95)-quantile(data_10_f$NDVI, 0.05))
# Get the mean VIs for each site
.linshi<-melt(data_11_f[c(-1,-3)],id=c(1))
site_mean_11<-dcast(.linshi,Site~variable,mean,na.rm=TRUE)
# Merge with ABG and N_pixels which was used to calculate Rveg
site_mean_11<-merge(site_mean_11,AGB,by="Site",all.y=T)
site_mean_11<-merge(site_mean_11,N_pixels,by="Site",all.x=T)
site_mean_11$Rveg<-site_mean_11$Veg_pixels/1250
head(site_mean_11)
## Site BLUE GREEN RED NIR NDVI mNDVI RVI
## 1 3 1251.412 1463.091 1720.905 2248.138 0.1323445 0.3556694 1.312914
## 2 4 1150.087 1365.044 1596.349 2173.728 0.1534737 0.3912133 1.378765
## 3 7 1158.619 1416.218 1736.070 2355.169 0.1537679 0.3483549 1.380388
## 4 8 1083.016 1280.325 1515.360 2057.573 0.1496345 0.3783016 1.363077
## 5 11 1088.809 1308.681 1572.494 2159.667 0.1595254 0.3769048 1.399254
## 6 12 1175.474 1422.486 1742.642 2281.863 0.1381761 0.3280308 1.339342
## REEI EVI SAVI MSAVI OSAVI mARI1 mARI2
## 1 0.7693612 0.4357775 0.1984914 0.7306002 0.1323391 0.8502275 1922.480
## 2 0.7395435 0.5215826 0.2301789 0.7604135 0.1534670 0.8576070 1880.175
## 3 0.7393226 0.4101167 0.2306222 0.7606376 0.1537616 0.8150715 1938.100
## 4 0.7436494 0.4705997 0.2244201 0.7563054 0.1496278 0.8441791 1753.005
## 5 0.7309390 0.4698508 0.2392545 0.7690167 0.1595183 0.8333135 1817.213
## 6 0.7634840 0.4023200 0.2072364 0.7364776 0.1381702 0.8194847 1882.473
## GCC EG FVC Density Name Y5 Y6
## 1 0.3292444 -46.13440 0.1382554 HD S2An2HD 11.078032 7.271884
## 2 0.3311611 -16.34800 0.1905260 HD S2An3HD 8.601376 9.932828
## 3 0.3272377 -62.25300 0.1912536 LD S2An1LD 6.580034 10.962102
## 4 0.3290658 -37.72516 0.1810283 HD S2An1HD 15.899325 13.901538
## 5 0.3286287 -43.94099 0.2054970 LD S2An2LD 12.376185 12.227722
## 6 0.3269435 -73.14240 0.1526819 LD S2An3LD 10.612028 5.449810
## Y7 Y8 Y9 Y11 Ct Veg_pixels Rveg
## 1 10.05684 7.695246 9.305107 10.945360 24.512 277 0.2216
## 2 10.64388 10.864941 13.347178 17.544068 39.336 568 0.4544
## 3 11.77028 12.158156 14.532373 14.902354 32.888 500 0.4000
## 4 15.86886 14.635193 17.084150 17.385223 42.503 504 0.4032
## 5 12.45627 12.243385 15.576473 19.018632 41.707 523 0.4184
## 6 5.50925 5.612370 6.121482 8.329726 18.811 307 0.2456
summary(site_mean_11)
## Site BLUE GREEN RED
## Min. : 3.00 Min. :1083 Min. :1280 Min. :1515
## 1st Qu.: 7.75 1st Qu.:1156 1st Qu.:1363 1st Qu.:1603
## Median :13.00 Median :1213 Median :1443 Median :1739
## Mean :12.75 Mean :1244 Mean :1460 Mean :1727
## 3rd Qu.:16.75 3rd Qu.:1331 3rd Qu.:1533 3rd Qu.:1801
## Max. :23.00 Max. :1470 Max. :1690 Max. :1937
##
## NIR NDVI mNDVI RVI
## Min. :2058 Min. :0.1108 Min. :0.3195 Min. :1.253
## 1st Qu.:2170 1st Qu.:0.1271 1st Qu.:0.3400 1st Qu.:1.300
## Median :2265 Median :0.1353 Median :0.3557 Median :1.326
## Mean :2265 Mean :0.1364 Mean :0.3562 Mean :1.329
## 3rd Qu.:2358 3rd Qu.:0.1506 3rd Qu.:0.3772 3rd Qu.:1.367
## Max. :2484 Max. :0.1595 Max. :0.3912 Max. :1.399
##
## REEI EVI SAVI MSAVI
## Min. :0.7309 Min. :0.3707 Min. :0.1662 Min. :0.6972
## 1st Qu.:0.7426 1st Qu.:0.4082 1st Qu.:0.1906 1st Qu.:0.7218
## Median :0.7664 Median :0.4378 Median :0.2029 Median :0.7335
## Mean :0.7646 Mean :0.4432 Mean :0.2046 Mean :0.7353
## 3rd Qu.:0.7781 3rd Qu.:0.4754 3rd Qu.:0.2259 3rd Qu.:0.7573
## Max. :0.8028 Max. :0.5216 Max. :0.2393 Max. :0.7690
##
## OSAVI mARI1 mARI2 GCC
## Min. :0.1108 Min. :0.8151 Min. :1753 Min. :0.3269
## 1st Qu.:0.1271 1st Qu.:0.8415 1st Qu.:1864 1st Qu.:0.3273
## Median :0.1353 Median :0.8472 Median :1910 Median :0.3288
## Mean :0.1364 Mean :0.8459 Mean :1928 Mean :0.3289
## 3rd Qu.:0.1506 3rd Qu.:0.8577 3rd Qu.:1969 3rd Qu.:0.3304
## Max. :0.1595 Max. :0.8764 Max. :2177 Max. :0.3319
##
## EG FVC Density Name Y5
## Min. :-85.35 Min. :0.0850 HD:6 S1An1HD:1 Min. : 6.144
## 1st Qu.:-64.98 1st Qu.:0.1253 LD:6 S1An1LD:1 1st Qu.: 6.567
## Median :-45.33 Median :0.1455 S1An2HD:1 Median : 9.607
## Mean :-51.35 Mean :0.1483 S1An2LD:1 Mean : 9.760
## 3rd Qu.:-37.46 3rd Qu.:0.1834 S1An3HD:1 3rd Qu.:12.099
## Max. :-16.35 Max. :0.2055 S1An3LD:1 Max. :15.899
## (Other):6
## Y6 Y7 Y8 Y9
## Min. : 4.866 Min. : 5.509 Min. : 4.236 Min. : 5.253
## 1st Qu.: 5.931 1st Qu.: 6.522 1st Qu.: 5.602 1st Qu.: 7.717
## Median : 8.158 Median :10.350 Median : 7.992 Median :10.243
## Mean : 8.480 Mean : 9.598 Mean : 8.527 Mean :10.667
## 3rd Qu.:10.842 3rd Qu.:11.552 3rd Qu.:11.188 3rd Qu.:13.643
## Max. :13.902 Max. :15.869 Max. :14.635 Max. :17.084
##
## Y11 Ct Veg_pixels Rveg
## Min. : 4.314 Min. :14.77 Min. : 87.0 Min. :0.0696
## 1st Qu.: 9.780 1st Qu.:19.19 1st Qu.:273.2 1st Qu.:0.2186
## Median :12.193 Median :24.15 Median :358.0 Median :0.2864
## Mean :12.352 Mean :27.05 Mean :361.7 Mean :0.2893
## 3rd Qu.:15.523 3rd Qu.:34.50 3rd Qu.:501.0 3rd Qu.:0.4008
## Max. :19.019 Max. :42.50 Max. :568.0 Max. :0.4544
##
# Get the mean VIs for each site
.linshi<-melt(data_10_f[c(-1,-3)],id=c(1))
site_mean_10<-dcast(.linshi,Site~variable,mean,na.rm=TRUE)
# Merge with ABG and N_pixels which was used to calculate Rveg
site_mean_10<-merge(site_mean_10,AGB,by="Site",all.y=T)
site_mean_10<-merge(site_mean_10,N_pixels,by="Site",all.x=T)
site_mean_10$Rveg<-site_mean_10$Veg_pixels/1250
head(site_mean_10)
## Site BLUE GREEN RED NIR NDVI mNDVI RVI
## 1 3 803.8912 1197.510 1382.075 1757.196 0.1192529 0.2468313 1.272213
## 2 4 771.0528 1139.130 1274.610 1696.048 0.1420810 0.3005757 1.334485
## 3 7 846.7462 1237.726 1314.018 1808.871 0.1581124 0.3467331 1.381685
## 4 8 761.3237 1127.792 1302.133 1693.357 0.1309847 0.2702037 1.303843
## 5 11 812.3931 1209.103 1312.376 1723.586 0.1352068 0.2932069 1.318736
## 6 12 844.0008 1218.302 1359.949 1794.336 0.1393924 0.3007693 1.330889
## REEI EVI SAVI MSAVI OSAVI mARI1 mARI2
## 1 0.7875697 0.2408802 0.1788507 0.7123828 0.1192468 0.8659861 1526.202
## 2 0.7524999 0.3171752 0.2130849 0.7474450 0.1420732 0.8942779 1523.785
## 3 0.7291465 0.3881143 0.2371299 0.7707990 0.1581041 0.9414881 1713.778
## 4 0.7693978 0.2722649 0.1964438 0.7305498 0.1309776 0.8661033 1471.682
## 5 0.7641445 0.3115609 0.2027762 0.7358037 0.1351996 0.9223429 1599.170
## 6 0.7580588 0.3238652 0.2090541 0.7418900 0.1393850 0.8956121 1619.722
## GCC EG FVC Density Name Y5 Y6
## 1 0.3531230 209.0528 0.09053319 HD S2An2HD 11.078032 7.271884
## 2 0.3564502 232.5960 0.15363325 HD S2An3HD 8.601376 9.932828
## 3 0.3633497 314.6878 0.19794644 LD S2An1LD 6.580034 10.962102
## 4 0.3521623 192.1266 0.12296169 HD S2An1HD 15.899325 13.901538
## 5 0.3619501 293.4362 0.13463211 LD S2An2LD 12.376185 12.227722
## 6 0.3549057 232.6536 0.14620175 LD S2An3LD 10.612028 5.449810
## Y7 Y8 Y9 Y11 Ct Veg_pixels Rveg
## 1 10.05684 7.695246 9.305107 10.945360 24.512 277 0.2216
## 2 10.64388 10.864941 13.347178 17.544068 39.336 568 0.4544
## 3 11.77028 12.158156 14.532373 14.902354 32.888 500 0.4000
## 4 15.86886 14.635193 17.084150 17.385223 42.503 504 0.4032
## 5 12.45627 12.243385 15.576473 19.018632 41.707 523 0.4184
## 6 5.50925 5.612370 6.121482 8.329726 18.811 307 0.2456
summary(site_mean_10)
## Site BLUE GREEN RED
## Min. : 3.00 Min. :737.4 Min. :1105 Min. :1117
## 1st Qu.: 7.75 1st Qu.:787.0 1st Qu.:1165 1st Qu.:1295
## Median :13.00 Median :828.2 Median :1214 Median :1336
## Mean :12.75 Mean :822.5 Mean :1211 Mean :1328
## 3rd Qu.:16.75 3rd Qu.:866.0 3rd Qu.:1256 3rd Qu.:1366
## Max. :23.00 Max. :884.6 Max. :1300 Max. :1483
##
## NIR NDVI mNDVI RVI
## Min. :1693 Min. :0.1136 Min. :0.2422 Min. :1.260
## 1st Qu.:1745 1st Qu.:0.1301 1st Qu.:0.2681 1st Qu.:1.302
## Median :1780 Median :0.1374 Median :0.2969 Median :1.325
## Mean :1792 Mean :0.1493 Mean :0.3189 Mean :1.361
## 3rd Qu.:1860 3rd Qu.:0.1597 3rd Qu.:0.3504 3rd Qu.:1.386
## Max. :1897 Max. :0.2238 Max. :0.4620 Max. :1.599
##
## REEI EVI SAVI MSAVI
## Min. :0.6392 Min. :0.2399 Min. :0.1704 Min. :0.7024
## 1st Qu.:0.7266 1st Qu.:0.2713 1st Qu.:0.1952 1st Qu.:0.7289
## Median :0.7602 Median :0.3144 Median :0.2061 Median :0.7397
## Mean :0.7435 Mean :0.3559 Mean :0.2239 Mean :0.7564
## 3rd Qu.:0.7711 3rd Qu.:0.3944 3rd Qu.:0.2396 3rd Qu.:0.7733
## Max. :0.7976 Max. :0.6083 Max. :0.3357 Max. :0.8607
##
## OSAVI mARI1 mARI2 GCC
## Min. :0.1136 Min. :0.8623 Min. :1472 Min. :0.3512
## 1st Qu.:0.1301 1st Qu.:0.8725 1st Qu.:1526 1st Qu.:0.3532
## Median :0.1374 Median :0.9001 Median :1626 Median :0.3585
## Mean :0.1493 Mean :0.9140 Mean :1649 Mean :0.3594
## 3rd Qu.:0.1597 3rd Qu.:0.9379 3rd Qu.:1729 3rd Qu.:0.3623
## Max. :0.2238 Max. :1.0107 Max. :1898 Max. :0.3728
##
## EG FVC Density Name Y5
## Min. :192.1 Min. :0.07502 HD:6 S1An1HD:1 Min. : 6.144
## 1st Qu.:223.1 1st Qu.:0.12059 LD:6 S1An1LD:1 1st Qu.: 6.567
## Median :263.0 Median :0.14070 S1An2HD:1 Median : 9.607
## Mean :271.0 Mean :0.17363 S1An2LD:1 Mean : 9.760
## 3rd Qu.:310.5 3rd Qu.:0.20244 S1An3HD:1 3rd Qu.:12.099
## Max. :390.0 Max. :0.37958 S1An3LD:1 Max. :15.899
## (Other):6
## Y6 Y7 Y8 Y9
## Min. : 4.866 Min. : 5.509 Min. : 4.236 Min. : 5.253
## 1st Qu.: 5.931 1st Qu.: 6.522 1st Qu.: 5.602 1st Qu.: 7.717
## Median : 8.158 Median :10.350 Median : 7.992 Median :10.243
## Mean : 8.480 Mean : 9.598 Mean : 8.527 Mean :10.667
## 3rd Qu.:10.842 3rd Qu.:11.552 3rd Qu.:11.188 3rd Qu.:13.643
## Max. :13.902 Max. :15.869 Max. :14.635 Max. :17.084
##
## Y11 Ct Veg_pixels Rveg
## Min. : 4.314 Min. :14.77 Min. : 87.0 Min. :0.0696
## 1st Qu.: 9.780 1st Qu.:19.19 1st Qu.:273.2 1st Qu.:0.2186
## Median :12.193 Median :24.15 Median :358.0 Median :0.2864
## Mean :12.352 Mean :27.05 Mean :361.7 Mean :0.2893
## 3rd Qu.:15.523 3rd Qu.:34.50 3rd Qu.:501.0 3rd Qu.:0.4008
## Max. :19.019 Max. :42.50 Max. :568.0 Max. :0.4544
##
As only vegetation pixels were calculated. Therefor the mean VIs for each site was calculated by [sum(VI_veg)/1250]
# Get the sum vegetation's VIs for each site
.linshi<-melt(data_11_f[data_11_f$VEG==1,c(-1,-3)],id=c(1))
site_veg_sum_11<-dcast(.linshi,Site~variable,sum,na.rm=TRUE)
.linshi<-melt(data_10_f[data_10_f$VEG==1,c(-1,-3)],id=c(1))
site_veg_sum_10<-dcast(.linshi,Site~variable,sum,na.rm=TRUE)
# average sum of VIs by dividing the total number of pixels
site_veg_mean_11<-site_veg_sum_11
for(var in vars[-length(vars)]){site_veg_mean_11[[var]]<-site_veg_mean_11[[var]]/1250}
site_veg_mean_10<-site_veg_sum_10
for(var in vars[-length(vars)]){site_veg_mean_10[[var]]<-site_veg_mean_10[[var]]/1250}
# Merge with ABG and N_pixels which was used to calculate Rveg
site_veg_mean_11<-merge(site_veg_mean_11,AGB,by="Site",all.y=T)
site_veg_mean_11<-merge(site_veg_mean_11,N_pixels,by="Site",all.x=T)
site_veg_mean_11$Rveg<-site_veg_mean_11$Veg_pixels/1250
head(site_veg_mean_11)
## Site BLUE GREEN RED NIR NDVI mNDVI RVI
## 1 3 263.1248 318.1232 347.8360 516.2600 0.04298983 137.2811 0.3305504
## 2 4 515.3232 629.2576 688.7472 1039.0440 0.09291328 288.3671 0.6947498
## 3 7 425.3872 533.8664 615.5136 952.5120 0.08678800 235.7533 0.6277143
## 4 8 442.9024 541.1168 604.0896 893.5704 0.07790600 237.9156 0.6013766
## 5 11 422.8400 520.3656 586.4856 914.1000 0.09199950 261.6842 0.6633542
## 6 12 245.6072 302.3592 335.9088 536.7072 0.05744080 163.8066 0.4021266
## REEI EVI SAVI MSAVI OSAVI mARI1 mARI2
## 1 187.8177 196.5256 0.06447637 227.6695 53.73506 253.2755 594275.6
## 2 377.4004 428.0197 0.13935080 474.5718 116.13650 520.8222 1197109.2
## 3 323.6249 306.4578 0.13016470 426.3510 108.48039 432.2488 1039634.2
## 4 342.5322 325.0294 0.11684298 413.4433 97.37823 452.3787 1008026.2
## 5 337.0097 364.4880 0.13797915 447.4629 114.99401 463.2074 1024550.6
## 6 192.4228 248.8934 0.08614819 268.0606 71.79753 275.9116 612350.7
## GCC EG FVC Density Name Y5 Y6
## 1 0.07569574 25.2856 0.06443590 HD S2An2HD 11.078032 7.271884
## 2 0.15565754 54.4448 0.14390611 HD S2An3HD 8.601376 9.932828
## 3 0.13488912 26.8320 0.13904259 LD S2An1LD 6.580034 10.962102
## 4 0.13719928 35.2416 0.11646455 HD S2An1HD 15.899325 13.901538
## 5 0.14156769 31.4056 0.14845479 LD S2An2LD 12.376185 12.227722
## 6 0.08330674 23.2024 0.09564599 LD S2An3LD 10.612028 5.449810
## Y7 Y8 Y9 Y11 Ct Veg_pixels Rveg
## 1 10.05684 7.695246 9.305107 10.945360 24.512 277 0.2216
## 2 10.64388 10.864941 13.347178 17.544068 39.336 568 0.4544
## 3 11.77028 12.158156 14.532373 14.902354 32.888 500 0.4000
## 4 15.86886 14.635193 17.084150 17.385223 42.503 504 0.4032
## 5 12.45627 12.243385 15.576473 19.018632 41.707 523 0.4184
## 6 5.50925 5.612370 6.121482 8.329726 18.811 307 0.2456
summary(site_veg_mean_11)
## Site BLUE GREEN RED
## Min. : 3.00 Min. : 84.1 Min. :103.0 Min. :111.2
## 1st Qu.: 7.75 1st Qu.:243.3 1st Qu.:299.5 1st Qu.:330.6
## Median :13.00 Median :358.1 Median :429.5 Median :467.9
## Mean :12.75 Mean :325.0 Mean :396.6 Mean :439.2
## 3rd Qu.:16.75 3rd Qu.:423.5 3rd Qu.:523.7 3rd Qu.:590.9
## Max. :23.00 Max. :515.3 Max. :629.3 Max. :688.7
##
## NIR NDVI mNDVI RVI
## Min. : 166.3 Min. :0.01377 Min. : 43.29 Min. :0.1050
## 1st Qu.: 505.4 1st Qu.:0.04282 1st Qu.:136.19 1st Qu.:0.3275
## Median : 687.8 Median :0.05640 Median :180.49 Median :0.4241
## Mean : 664.3 Mean :0.05944 Mean :180.52 Mean :0.4434
## 3rd Qu.: 898.7 3rd Qu.:0.08013 3rd Qu.:236.29 3rd Qu.:0.6080
## Max. :1039.0 Max. :0.09291 Max. :288.37 Max. :0.6947
##
## REEI EVI SAVI MSAVI
## Min. : 58.65 Min. : 62.09 Min. :0.02065 Min. : 71.85
## 1st Qu.:184.60 1st Qu.:197.15 1st Qu.:0.06422 1st Qu.:225.26
## Median :244.09 Median :265.14 Median :0.08459 Median :292.90
## Mean :239.84 Mean :258.10 Mean :0.08914 Mean :302.64
## 3rd Qu.:326.97 3rd Qu.:322.67 3rd Qu.:0.12017 3rd Qu.:416.67
## Max. :377.40 Max. :428.02 Max. :0.13935 Max. :474.57
##
## OSAVI mARI1 mARI2 GCC
## Min. : 17.21 Min. : 80.81 Min. : 194124 Min. :0.02402
## 1st Qu.: 53.52 1st Qu.:250.72 1st Qu.: 583343 1st Qu.:0.07485
## Median : 70.50 Median :329.18 Median : 792998 Median :0.09784
## Mean : 74.29 Mean :326.76 Mean : 755552 Mean :0.09854
## 3rd Qu.:100.15 3rd Qu.:437.28 3rd Qu.:1012157 3rd Qu.:0.13547
## Max. :116.14 Max. :520.82 Max. :1197109 Max. :0.15566
##
## EG FVC Density Name Y5
## Min. :10.63 Min. :0.02090 HD:6 S1An1HD:1 Min. : 6.144
## 1st Qu.:24.76 1st Qu.:0.06487 LD:6 S1An1LD:1 1st Qu.: 6.567
## Median :30.10 Median :0.08944 S1An2HD:1 Median : 9.607
## Mean :28.90 Mean :0.09231 S1An2LD:1 Mean : 9.760
## 3rd Qu.:32.67 3rd Qu.:0.12211 S1An3HD:1 3rd Qu.:12.099
## Max. :54.44 Max. :0.14845 S1An3LD:1 Max. :15.899
## (Other):6
## Y6 Y7 Y8 Y9
## Min. : 4.866 Min. : 5.509 Min. : 4.236 Min. : 5.253
## 1st Qu.: 5.931 1st Qu.: 6.522 1st Qu.: 5.602 1st Qu.: 7.717
## Median : 8.158 Median :10.350 Median : 7.992 Median :10.243
## Mean : 8.480 Mean : 9.598 Mean : 8.527 Mean :10.667
## 3rd Qu.:10.842 3rd Qu.:11.552 3rd Qu.:11.188 3rd Qu.:13.643
## Max. :13.902 Max. :15.869 Max. :14.635 Max. :17.084
##
## Y11 Ct Veg_pixels Rveg
## Min. : 4.314 Min. :14.77 Min. : 87.0 Min. :0.0696
## 1st Qu.: 9.780 1st Qu.:19.19 1st Qu.:273.2 1st Qu.:0.2186
## Median :12.193 Median :24.15 Median :358.0 Median :0.2864
## Mean :12.352 Mean :27.05 Mean :361.7 Mean :0.2893
## 3rd Qu.:15.523 3rd Qu.:34.50 3rd Qu.:501.0 3rd Qu.:0.4008
## Max. :19.019 Max. :42.50 Max. :568.0 Max. :0.4544
##
site_veg_mean_10<-merge(site_veg_mean_10,AGB,by="Site",all.y=T)
site_veg_mean_10<-merge(site_veg_mean_10,N_pixels,by="Site",all.x=T)
site_veg_mean_10$Rveg<-site_veg_mean_10$Veg_pixels/1250
head(site_veg_mean_10)
## Site BLUE GREEN RED NIR NDVI mNDVI RVI
## 1 3 182.4624 272.4456 290.9480 384.4976 0.03055138 84.26654 0.2929318
## 2 4 361.6720 535.5872 557.7688 771.6264 0.07299333 202.94313 0.6299595
## 3 7 328.2176 488.9560 486.9712 715.7512 0.07541739 208.70005 0.5883808
## 4 8 320.6152 477.9224 516.8288 694.7440 0.05937380 159.87709 0.5435623
## 5 11 331.5056 497.6168 506.3976 707.2520 0.06853058 189.26575 0.5858051
## 6 12 184.8048 277.0344 282.0744 409.6448 0.04480389 121.20094 0.3578630
## REEI EVI SAVI MSAVI OSAVI mARI1 mARI2
## 1 210.1170 89.35629 0.04581953 205.3685 38.18721 259.4321 451651.9
## 2 411.5221 229.44915 0.10947100 440.4444 91.23660 545.9118 930665.7
## 3 342.3488 252.14325 0.11310699 407.6209 94.26664 501.5485 902925.8
## 4 375.1587 171.10828 0.08904571 380.8135 74.21325 466.9116 805731.1
## 5 377.2840 217.39316 0.10277793 407.1852 85.65844 513.3204 875649.8
## 6 213.3675 146.09643 0.06719360 247.1131 56.00159 300.7750 508954.1
## GCC EG FVC Density Name Y5 Y6
## 1 0.08078233 71.4808 0.03146407 HD S2An2HD 11.078032 7.271884
## 2 0.16683868 151.7336 0.09311751 HD S2An3HD 8.601376 9.932828
## 3 0.14963963 162.7232 0.11282492 LD S2An1LD 6.580034 10.962102
## 4 0.14623447 118.4008 0.06771303 HD S2An1HD 15.899325 13.901538
## 5 0.15545777 157.3304 0.08938938 LD S2An2LD 12.376185 12.227722
## 6 0.09095828 87.1896 0.06512168 LD S2An3LD 10.612028 5.449810
## Y7 Y8 Y9 Y11 Ct Veg_pixels Rveg
## 1 10.05684 7.695246 9.305107 10.945360 24.512 277 0.2216
## 2 10.64388 10.864941 13.347178 17.544068 39.336 568 0.4544
## 3 11.77028 12.158156 14.532373 14.902354 32.888 500 0.4000
## 4 15.86886 14.635193 17.084150 17.385223 42.503 504 0.4032
## 5 12.45627 12.243385 15.576473 19.018632 41.707 523 0.4184
## 6 5.50925 5.612370 6.121482 8.329726 18.811 307 0.2456
summary(site_veg_mean_10)
## Site BLUE GREEN RED
## Min. : 3.00 Min. : 59.81 Min. : 90.28 Min. : 89.02
## 1st Qu.: 7.75 1st Qu.:180.01 1st Qu.:269.48 1st Qu.:279.21
## Median :13.00 Median :226.72 Median :341.84 Median :313.94
## Mean :12.75 Mean :230.15 Mean :343.93 Mean :347.43
## 3rd Qu.:16.75 3rd Qu.:322.52 3rd Qu.:480.68 3rd Qu.:491.83
## Max. :23.00 Max. :361.67 Max. :535.59 Max. :557.77
##
## NIR NDVI mNDVI RVI
## Min. :128.7 Min. :0.01267 Min. : 35.81 Min. :0.1011
## 1st Qu.:383.6 1st Qu.:0.03449 1st Qu.: 93.34 1st Qu.:0.2969
## Median :510.6 Median :0.05810 Median :160.08 Median :0.4477
## Mean :505.4 Mean :0.05355 Mean :146.20 Mean :0.4252
## 3rd Qu.:697.9 3rd Qu.:0.06965 3rd Qu.:192.97 3rd Qu.:0.5864
## Max. :771.6 Max. :0.09520 Max. :242.24 Max. :0.6300
##
## REEI EVI SAVI MSAVI
## Min. : 60.43 Min. : 44.7 Min. :0.01900 Min. : 70.06
## 1st Qu.:204.21 1st Qu.:107.6 1st Qu.:0.05173 1st Qu.:206.21
## Median :230.45 Median :187.3 Median :0.08714 Median :305.25
## Mean :250.27 Mean :181.7 Mean :0.08030 Mean :292.21
## 3rd Qu.:350.55 3rd Qu.:235.1 3rd Qu.:0.10445 3rd Qu.:395.98
## Max. :411.52 Max. :367.4 Max. :0.14277 Max. :440.44
##
## OSAVI mARI1 mARI2 GCC
## Min. : 15.83 Min. : 88.6 Min. :164714 Min. :0.02622
## 1st Qu.: 43.12 1st Qu.:258.1 1st Qu.:460228 1st Qu.:0.07996
## Median : 72.62 Median :375.1 Median :675425 Median :0.10847
## Mean : 66.93 Mean :359.5 Mean :633117 Mean :0.10779
## 3rd Qu.: 87.05 3rd Qu.:475.6 3rd Qu.:839300 3rd Qu.:0.14709
## Max. :118.99 Max. :545.9 Max. :930666 Max. :0.16684
##
## EG FVC Density Name Y5
## Min. : 31.74 Min. :0.01837 HD:6 S1An1HD:1 Min. : 6.144
## 1st Qu.: 76.27 1st Qu.:0.04451 LD:6 S1An1LD:1 1st Qu.: 6.567
## Median :121.59 Median :0.07845 S1An2HD:1 Median : 9.607
## Mean :110.28 Mean :0.07883 S1An2LD:1 Mean : 9.760
## 3rd Qu.:153.13 3rd Qu.:0.09804 S1An3HD:1 3rd Qu.:12.099
## Max. :162.72 Max. :0.18319 S1An3LD:1 Max. :15.899
## (Other):6
## Y6 Y7 Y8 Y9
## Min. : 4.866 Min. : 5.509 Min. : 4.236 Min. : 5.253
## 1st Qu.: 5.931 1st Qu.: 6.522 1st Qu.: 5.602 1st Qu.: 7.717
## Median : 8.158 Median :10.350 Median : 7.992 Median :10.243
## Mean : 8.480 Mean : 9.598 Mean : 8.527 Mean :10.667
## 3rd Qu.:10.842 3rd Qu.:11.552 3rd Qu.:11.188 3rd Qu.:13.643
## Max. :13.902 Max. :15.869 Max. :14.635 Max. :17.084
##
## Y11 Ct Veg_pixels Rveg
## Min. : 4.314 Min. :14.77 Min. : 87.0 Min. :0.0696
## 1st Qu.: 9.780 1st Qu.:19.19 1st Qu.:273.2 1st Qu.:0.2186
## Median :12.193 Median :24.15 Median :358.0 Median :0.2864
## Mean :12.352 Mean :27.05 Mean :361.7 Mean :0.2893
## 3rd Qu.:15.523 3rd Qu.:34.50 3rd Qu.:501.0 3rd Qu.:0.4008
## Max. :19.019 Max. :42.50 Max. :568.0 Max. :0.4544
##
# Build a function for calculate "spearman rho"
f_spear<-function(data,var){
a<-pspearman::spearman.test(data[[var]],data[["Ct"]])
return(c(var,a$estimate,a$p.value))
}
# the whole site
Rho_11<-sapply(vars,f_spear,data=site_mean_11)
Rho_11<-data.frame(t(Rho_11))
for(i in c(2:3)){Rho_11[[i]]<-as.numeric(as.character(Rho_11[[i]]))}
names(Rho_11)<-c("VIs","Rho","P")
print(Rho_11,digits=3)
## VIs Rho P
## BLUE BLUE -0.706 0.012923
## GREEN GREEN -0.580 0.052076
## RED RED -0.685 0.017015
## NIR NIR -0.301 0.342415
## NDVI NDVI 0.881 0.000335
## RVI RVI 0.881 0.000335
## SAVI SAVI 0.881 0.000335
## GCC GCC 0.420 0.176733
## EG EG 0.636 0.029942
## FVC FVC 0.881 0.000335
## Rveg Rveg 0.909 0.000115
Rho_10<-sapply(vars,f_spear,data=site_mean_10)
Rho_10<-data.frame(t(Rho_10))
for(i in c(2:3)){Rho_10[[i]]<-as.numeric(as.character(Rho_10[[i]]))}
names(Rho_10)<-c("VIs","Rho","P")
print(Rho_10,digits=3)
## VIs Rho P
## BLUE BLUE -0.6014 0.042800
## GREEN GREEN -0.6713 0.020194
## RED RED -0.6364 0.029942
## NIR NIR -0.6923 0.015546
## NDVI NDVI 0.1608 0.619183
## RVI RVI 0.2308 0.470802
## SAVI SAVI 0.1608 0.619183
## GCC GCC 0.1399 0.667310
## EG EG -0.0909 0.782983
## FVC FVC 0.1608 0.619183
## Rveg Rveg 0.9091 0.000115
# only vegetation
Rho_veg_11<-sapply(vars,f_spear,data=site_veg_mean_11)
Rho_veg_11<-data.frame(t(Rho_veg_11))
for(i in c(2:3)){Rho_veg_11[[i]]<-as.numeric(as.character(Rho_veg_11[[i]]))}
names(Rho_veg_11)<-c("VIs","Rho_Veg","P_veg")
print(Rho_veg_11,digits=3)
## VIs Rho_Veg P_veg
## BLUE BLUE 0.937 2.79e-05
## GREEN GREEN 0.937 2.79e-05
## RED RED 0.916 8.39e-05
## NIR NIR 0.881 3.35e-04
## NDVI NDVI 0.860 6.44e-04
## RVI RVI 0.895 2.03e-04
## SAVI SAVI 0.860 6.44e-04
## GCC GCC 0.909 1.15e-04
## EG EG 0.727 9.63e-03
## FVC FVC 0.846 9.45e-04
## Rveg Rveg 0.909 1.15e-04
Rho<-cbind(Rho_veg_11,Rho_11[-1])
print(Rho,digits=3)
## VIs Rho_Veg P_veg Rho P
## BLUE BLUE 0.937 2.79e-05 -0.706 0.012923
## GREEN GREEN 0.937 2.79e-05 -0.580 0.052076
## RED RED 0.916 8.39e-05 -0.685 0.017015
## NIR NIR 0.881 3.35e-04 -0.301 0.342415
## NDVI NDVI 0.860 6.44e-04 0.881 0.000335
## RVI RVI 0.895 2.03e-04 0.881 0.000335
## SAVI SAVI 0.860 6.44e-04 0.881 0.000335
## GCC GCC 0.909 1.15e-04 0.420 0.176733
## EG EG 0.727 9.63e-03 0.636 0.029942
## FVC FVC 0.846 9.45e-04 0.881 0.000335
## Rveg Rveg 0.909 1.15e-04 0.909 0.000115
Rho_veg_10<-sapply(vars,f_spear,data=site_veg_mean_10)
Rho_veg_10<-data.frame(t(Rho_veg_10))
for(i in c(2:3)){Rho_veg_10[[i]]<-as.numeric(as.character(Rho_veg_10[[i]]))}
names(Rho_veg_10)<-c("VIs","Rho_Veg","P_veg")
print(Rho_veg_10,digits=3)
## VIs Rho_Veg P_veg
## BLUE BLUE 0.881 3.35e-04
## GREEN GREEN 0.881 3.35e-04
## RED RED 0.937 2.79e-05
## NIR NIR 0.881 3.35e-04
## NDVI NDVI 0.727 9.63e-03
## RVI RVI 0.797 2.91e-03
## SAVI SAVI 0.727 9.63e-03
## GCC GCC 0.888 2.61e-04
## EG EG 0.699 1.42e-02
## FVC FVC 0.580 5.21e-02
## Rveg Rveg 0.909 1.15e-04
Rho<-cbind(Rho_veg_10,Rho_10[-1])
print(Rho,digits=3)
## VIs Rho_Veg P_veg Rho P
## BLUE BLUE 0.881 3.35e-04 -0.6014 0.042800
## GREEN GREEN 0.881 3.35e-04 -0.6713 0.020194
## RED RED 0.937 2.79e-05 -0.6364 0.029942
## NIR NIR 0.881 3.35e-04 -0.6923 0.015546
## NDVI NDVI 0.727 9.63e-03 0.1608 0.619183
## RVI RVI 0.797 2.91e-03 0.2308 0.470802
## SAVI SAVI 0.727 9.63e-03 0.1608 0.619183
## GCC GCC 0.888 2.61e-04 0.1399 0.667310
## EG EG 0.699 1.42e-02 -0.0909 0.782983
## FVC FVC 0.580 5.21e-02 0.1608 0.619183
## Rveg Rveg 0.909 1.15e-04 0.9091 0.000115
#---------------------
# Build a function for calculate "coefficients for carbon and vis"
f_coef<-function(data,var){
all<-summary.lm(lm(data[["Ct"]] ~ data[[var]]))
all_rms<-rmse(data[["Ct"]],data[[var]])
HD<-summary.lm(lm(data[data$Density=="HD","Ct"] ~ data[data$Density=="HD",var]))
HD_rms<-rmse(data[data$Density=="HD","Ct"] , data[data$Density=="HD",i])
LD<-summary.lm(lm(data[data$Density=="LD","Ct"] ~ data[data$Density=="LD",var]))
LD_rms<-rmse(data[data$Density=="LD","Ct"] , data[data$Density=="LD",var])
return(c(var,all$r.squared,all$coefficients[1],all$coefficients[2],all$coefficients[8],all_rms,HD$r.squared,HD$coefficients[1],HD$coefficients[2],HD$coefficients[8],HD_rms,LD$r.squared,LD$coefficients[1],LD$coefficients[2],LD$coefficients[8],LD_rms))
}
# The whole site
Coef_11<-sapply(vars[-c(1:4)],f_coef,data=site_mean_11)
Coef_11<-data.frame(t(Coef_11))
for(i in c(2:16)){Coef_11[[i]]<-as.numeric(as.character(Coef_11[[i]]))}
names(Coef_11)<-c("VIs","r_all","inte_all","slope_all","P_all","Rmse_all","r_HD","inte_HD","slope_HD","P_HD","Rmse_HD","r_LD","inte_LD","slope_LD","P_LD","Rmse_LD")
print(Coef_11,digits=3)
## VIs r_all inte_all slope_all P_all Rmse_all r_HD inte_HD
## NDVI NDVI 0.783 -45.52 532.080 1.32e-04 28.5 0.9361 -61.58
## RVI RVI 0.754 -207.52 176.564 2.51e-04 27.3 0.9290 -273.74
## SAVI SAVI 0.783 -45.52 354.777 1.32e-04 28.4 0.9361 -61.59
## GCC GCC 0.104 -559.11 1782.293 3.07e-01 28.3 0.0755 -565.17
## EG EG 0.391 41.52 0.282 2.97e-02 80.1 0.4335 40.65
## FVC FVC 0.783 -4.84 215.081 1.32e-04 28.5 0.9361 -10.60
## Rveg Rveg 0.827 5.44 74.707 4.14e-05 28.3 0.8315 7.22
## slope_HD P_HD Rmse_HD r_LD inte_LD slope_LD P_LD Rmse_LD
## NDVI 666.74 0.00157 1469 0.754 -37.99 463.375 0.0248 27.5
## RVI 228.47 0.00194 1469 0.740 -181.16 155.135 0.0279 26.4
## SAVI 444.58 0.00157 1469 0.754 -37.99 308.962 0.0248 27.5
## GCC 1797.73 0.59825 1469 0.182 -970.74 3040.603 0.3995 27.4
## EG 0.31 0.15507 1469 0.488 51.48 0.411 0.1226 88.2
## FVC 269.52 0.00157 1469 0.754 -2.56 187.309 0.0248 27.5
## Rveg 71.86 0.01131 1469 0.848 3.07 79.521 0.0092 27.4
# reshape coef_11
.all<-cbind(Coef_11[c(1:6)],type="ALL")
.hd<-cbind(Coef_11[c(1,7:11)],type="HD")
.ld<-cbind(Coef_11[c(1,12:16)],type="LD")
names(.all)<-names(.hd)<-names(.ld)<-c("VIs","R2","intercept","slope","P","Rmse","Type")
Coef_11_reshape<-rbind(.all,.hd,.ld)
Coef_11_reshape<-arrange(Coef_11_reshape,VIs,desc(Type))
print(Coef_11_reshape,digits=3)
## VIs R2 intercept slope P Rmse Type
## 1 EG 0.4881 51.48 0.411 1.23e-01 88.2 LD
## 2 EG 0.4335 40.65 0.310 1.55e-01 1468.6 HD
## 3 EG 0.3909 41.52 0.282 2.97e-02 80.1 ALL
## 4 FVC 0.7544 -2.56 187.309 2.48e-02 27.5 LD
## 5 FVC 0.9361 -10.60 269.516 1.57e-03 1468.6 HD
## 6 FVC 0.7827 -4.84 215.081 1.32e-04 28.5 ALL
## 7 GCC 0.1816 -970.74 3040.603 4.00e-01 27.4 LD
## 8 GCC 0.0755 -565.17 1797.733 5.98e-01 1468.6 HD
## 9 GCC 0.1040 -559.11 1782.293 3.07e-01 28.3 ALL
## 10 NDVI 0.7544 -37.99 463.375 2.48e-02 27.5 LD
## 11 NDVI 0.9361 -61.58 666.744 1.57e-03 1468.6 HD
## 12 NDVI 0.7827 -45.52 532.080 1.32e-04 28.5 ALL
## 13 Rveg 0.8475 3.07 79.521 9.20e-03 27.4 LD
## 14 Rveg 0.8315 7.22 71.863 1.13e-02 1468.6 HD
## 15 Rveg 0.8269 5.44 74.707 4.14e-05 28.3 ALL
## 16 RVI 0.7403 -181.16 155.135 2.79e-02 26.4 LD
## 17 RVI 0.9290 -273.74 228.470 1.94e-03 1468.6 HD
## 18 RVI 0.7535 -207.52 176.564 2.51e-04 27.3 ALL
## 19 SAVI 0.7544 -37.99 308.962 2.48e-02 27.5 LD
## 20 SAVI 0.9361 -61.59 444.576 1.57e-03 1468.6 HD
## 21 SAVI 0.7827 -45.52 354.777 1.32e-04 28.4 ALL
# only with vegetation pixels
Coef_veg_11<-sapply(vars[-c(1:4)],f_coef,data=site_veg_mean_11)
Coef_veg_11<-data.frame(t(Coef_veg_11))
for(i in c(2:16)){Coef_veg_11[[i]]<-as.numeric(as.character(Coef_veg_11[[i]]))}
names(Coef_veg_11)<-c("VIs","r_all","inte_all","slope_all","P_all","Rmse_all","r_HD","inte_HD","slope_HD","P_HD","Rmse_HD","r_LD","inte_LD","slope_LD","P_LD","Rmse_LD")
print(Coef_veg_11,digits=3)
## VIs r_all inte_all slope_all P_all Rmse_all r_HD inte_HD
## NDVI NDVI 0.782 7.09 335.866 1.35e-04 28.55 0.835 7.82
## RVI RVI 0.811 6.09 47.278 6.46e-05 28.14 0.836 7.46
## SAVI SAVI 0.782 7.09 223.943 1.35e-04 28.51 0.835 7.82
## GCC GCC 0.826 5.35 220.241 4.30e-05 28.50 0.830 7.21
## EG EG 0.459 10.50 0.573 1.56e-02 8.51 0.605 9.32
## FVC FVC 0.742 8.37 202.442 3.20e-04 28.51 0.833 8.28
## Rveg Rveg 0.827 5.44 74.707 4.14e-05 28.30 0.832 7.22
## slope_HD P_HD Rmse_HD r_LD inte_LD slope_LD P_LD Rmse_LD
## NDVI 356.51 0.0108 29.4 0.807 5.29 334.515 0.01494 27.60
## RVI 47.40 0.0107 29.4 0.831 4.09 48.547 0.01144 27.19
## SAVI 237.70 0.0108 29.4 0.807 5.29 223.041 0.01494 27.57
## GCC 210.40 0.0116 29.4 0.845 2.83 236.595 0.00948 27.57
## EG 0.58 0.0685 29.4 0.292 9.17 0.661 0.26867 7.71
## FVC 230.98 0.0111 29.4 0.781 6.52 197.612 0.01942 27.56
## Rveg 71.86 0.0113 29.4 0.848 3.07 79.521 0.00920 27.36
# reshape coef_11
.all<-cbind(Coef_veg_11[c(1:6)],type="ALL")
.hd<-cbind(Coef_veg_11[c(1,7:11)],type="HD")
.ld<-cbind(Coef_veg_11[c(1,12:16)],type="LD")
names(.all)<-names(.hd)<-names(.ld)<-c("VIs","R2","intercept","slope","P","Rmse","Type")
Coef_veg_11_reshape<-rbind(.all,.hd,.ld)
Coef_veg_11_reshape<-arrange(Coef_veg_11_reshape,VIs,desc(Type))
print(Coef_veg_11_reshape,digits=3)
## VIs R2 intercept slope P Rmse Type
## 1 EG 0.292 9.17 0.661 2.69e-01 7.71 LD
## 2 EG 0.605 9.32 0.580 6.85e-02 29.41 HD
## 3 EG 0.459 10.50 0.573 1.56e-02 8.51 ALL
## 4 FVC 0.781 6.52 197.612 1.94e-02 27.56 LD
## 5 FVC 0.833 8.28 230.979 1.11e-02 29.41 HD
## 6 FVC 0.742 8.37 202.442 3.20e-04 28.51 ALL
## 7 GCC 0.845 2.83 236.595 9.48e-03 27.57 LD
## 8 GCC 0.830 7.21 210.402 1.16e-02 29.41 HD
## 9 GCC 0.826 5.35 220.241 4.30e-05 28.50 ALL
## 10 NDVI 0.807 5.29 334.515 1.49e-02 27.60 LD
## 11 NDVI 0.835 7.82 356.507 1.08e-02 29.41 HD
## 12 NDVI 0.782 7.09 335.866 1.35e-04 28.55 ALL
## 13 Rveg 0.848 3.07 79.521 9.20e-03 27.36 LD
## 14 Rveg 0.832 7.22 71.863 1.13e-02 29.41 HD
## 15 Rveg 0.827 5.44 74.707 4.14e-05 28.30 ALL
## 16 RVI 0.831 4.09 48.547 1.14e-02 27.19 LD
## 17 RVI 0.836 7.46 47.398 1.07e-02 29.41 HD
## 18 RVI 0.811 6.09 47.278 6.46e-05 28.14 ALL
## 19 SAVI 0.807 5.29 223.041 1.49e-02 27.57 LD
## 20 SAVI 0.835 7.82 237.704 1.08e-02 29.41 HD
## 21 SAVI 0.782 7.09 223.943 1.35e-04 28.51 ALL
# The whole site
Coef_10<-sapply(vars[-c(1:4)],f_coef,data=site_mean_10)
Coef_10<-data.frame(t(Coef_10))
for(i in c(2:16)){Coef_10[[i]]<-as.numeric(as.character(Coef_10[[i]]))}
names(Coef_10)<-c("VIs","r_all","inte_all","slope_all","P_all","Rmse_all","r_HD","inte_HD","slope_HD","P_HD","Rmse_HD","r_LD","inte_LD","slope_LD","P_LD","Rmse_LD")
print(Coef_10,digits=3)
## VIs r_all inte_all slope_all P_all Rmse_all r_HD inte_HD
## NDVI NDVI 1.11e-04 27.51 -3.0771 9.74e-01 28.5 0.0722 42.25
## RVI RVI 4.47e-04 29.81 -2.0279 9.48e-01 27.3 0.0736 72.65
## SAVI SAVI 1.11e-04 27.51 -2.0552 9.74e-01 28.4 0.0722 42.25
## GCC GCC 6.93e-06 25.78 3.5540 9.94e-01 28.3 0.3133 337.53
## EG EG 1.13e-02 31.37 -0.0159 7.42e-01 252.2 0.4149 53.05
## FVC FVC 1.11e-04 27.25 -1.1132 9.74e-01 28.4 0.0722 33.88
## Rveg Rveg 8.27e-01 5.44 74.7069 4.14e-05 28.3 0.8315 7.22
## slope_HD P_HD Rmse_HD r_LD inte_LD slope_LD P_LD Rmse_LD
## NDVI -96.6739 0.6067 29.2 0.0454 18.522 51.7728 0.6854 27.5
## RVI -33.0257 0.6030 29.2 0.0360 5.957 14.8826 0.7187 26.4
## SAVI -64.4676 0.6066 29.2 0.0454 18.521 34.5218 0.6854 27.5
## GCC -862.2440 0.2481 29.2 0.3096 -209.638 656.0979 0.2515 27.3
## EG -0.0927 0.1675 29.2 0.4037 -0.604 0.0995 0.1752 249.0
## FVC -34.9743 0.6067 29.2 0.0454 23.000 18.7301 0.6854 27.5
## Rveg 71.8626 0.0113 29.2 0.8475 3.069 79.5214 0.0092 27.4
# reshape coef_10
.all<-cbind(Coef_10[c(1:6)],type="ALL")
.hd<-cbind(Coef_10[c(1,7:11)],type="HD")
.ld<-cbind(Coef_10[c(1,12:16)],type="LD")
names(.all)<-names(.hd)<-names(.ld)<-c("VIs","R2","intercept","slope","P","Rmse","Type")
Coef_10_reshape<-rbind(.all,.hd,.ld)
Coef_10_reshape<-arrange(Coef_10_reshape,VIs,desc(Type))
print(Coef_10_reshape,digits=3)
## VIs R2 intercept slope P Rmse Type
## 1 EG 4.04e-01 -0.604 0.0995 1.75e-01 249.0 LD
## 2 EG 4.15e-01 53.054 -0.0927 1.67e-01 29.2 HD
## 3 EG 1.13e-02 31.366 -0.0159 7.42e-01 252.2 ALL
## 4 FVC 4.54e-02 23.000 18.7301 6.85e-01 27.5 LD
## 5 FVC 7.22e-02 33.883 -34.9743 6.07e-01 29.2 HD
## 6 FVC 1.11e-04 27.247 -1.1132 9.74e-01 28.4 ALL
## 7 GCC 3.10e-01 -209.638 656.0979 2.52e-01 27.3 LD
## 8 GCC 3.13e-01 337.531 -862.2440 2.48e-01 29.2 HD
## 9 GCC 6.93e-06 25.777 3.5540 9.94e-01 28.3 ALL
## 10 NDVI 4.54e-02 18.522 51.7728 6.85e-01 27.5 LD
## 11 NDVI 7.22e-02 42.245 -96.6739 6.07e-01 29.2 HD
## 12 NDVI 1.11e-04 27.513 -3.0771 9.74e-01 28.5 ALL
## 13 Rveg 8.48e-01 3.069 79.5214 9.20e-03 27.4 LD
## 14 Rveg 8.32e-01 7.220 71.8626 1.13e-02 29.2 HD
## 15 Rveg 8.27e-01 5.439 74.7069 4.14e-05 28.3 ALL
## 16 RVI 3.60e-02 5.957 14.8826 7.19e-01 26.4 LD
## 17 RVI 7.36e-02 72.647 -33.0257 6.03e-01 29.2 HD
## 18 RVI 4.47e-04 29.813 -2.0279 9.48e-01 27.3 ALL
## 19 SAVI 4.54e-02 18.521 34.5218 6.85e-01 27.5 LD
## 20 SAVI 7.22e-02 42.247 -64.4676 6.07e-01 29.2 HD
## 21 SAVI 1.11e-04 27.514 -2.0552 9.74e-01 28.4 ALL
# only with vegetation pixels
Coef_veg_10<-sapply(vars[-c(1:4)],f_coef,data=site_veg_mean_10)
Coef_veg_10<-data.frame(t(Coef_veg_10))
for(i in c(2:16)){Coef_veg_10[[i]]<-as.numeric(as.character(Coef_veg_10[[i]]))}
names(Coef_veg_10)<-c("VIs","r_all","inte_all","slope_all","P_all","Rmse_all","r_HD","inte_HD","slope_HD","P_HD","Rmse_HD","r_LD","inte_LD","slope_LD","P_LD","Rmse_LD")
print(Coef_veg_10,digits=3)
## VIs r_all inte_all slope_all P_all Rmse_all r_HD inte_HD
## NDVI NDVI 0.390 13.73 248.806 2.99e-02 28.6 0.436 12.65
## RVI RVI 0.663 7.88 45.099 1.27e-03 28.2 0.700 8.31
## SAVI SAVI 0.390 13.73 165.903 2.99e-02 28.5 0.436 12.65
## GCC GCC 0.798 5.69 198.166 8.99e-05 28.5 0.800 7.29
## EG EG 0.534 9.51 0.159 6.93e-03 90.9 0.446 10.90
## FVC FVC 0.127 21.13 75.199 2.56e-01 28.5 0.115 21.16
## Rveg Rveg 0.827 5.44 74.707 4.14e-05 28.3 0.832 7.22
## slope_HD P_HD Rmse_HD r_LD inte_LD slope_LD P_LD Rmse_LD
## NDVI 304.249 0.1532 29.4 0.419 13.25 227.677 0.1647 27.6
## RVI 47.568 0.0377 29.4 0.668 6.95 43.909 0.0471 27.2
## SAVI 202.871 0.1532 29.4 0.419 13.25 151.815 0.1647 27.6
## GCC 193.603 0.0161 29.4 0.828 3.61 207.064 0.0119 27.6
## EG 0.162 0.1474 29.4 0.719 6.91 0.167 0.0329 97.2
## FVC 96.297 0.5100 29.4 0.194 19.52 76.425 0.3822 27.6
## Rveg 71.863 0.0113 29.4 0.848 3.07 79.521 0.0092 27.4
# reshape coef_10
.all<-cbind(Coef_veg_10[c(1:6)],type="ALL")
.hd<-cbind(Coef_veg_10[c(1,7:11)],type="HD")
.ld<-cbind(Coef_veg_10[c(1,12:16)],type="LD")
names(.all)<-names(.hd)<-names(.ld)<-c("VIs","R2","intercept","slope","P","Rmse","Type")
Coef_veg_10_reshape<-rbind(.all,.hd,.ld)
Coef_veg_10_reshape<-arrange(Coef_veg_10_reshape,VIs,desc(Type))
print(Coef_veg_10_reshape,digits=3)
## VIs R2 intercept slope P Rmse Type
## 1 EG 0.719 6.91 0.167 3.29e-02 97.2 LD
## 2 EG 0.446 10.90 0.162 1.47e-01 29.4 HD
## 3 EG 0.534 9.51 0.159 6.93e-03 90.9 ALL
## 4 FVC 0.194 19.52 76.425 3.82e-01 27.6 LD
## 5 FVC 0.115 21.16 96.297 5.10e-01 29.4 HD
## 6 FVC 0.127 21.13 75.199 2.56e-01 28.5 ALL
## 7 GCC 0.828 3.61 207.064 1.19e-02 27.6 LD
## 8 GCC 0.800 7.29 193.603 1.61e-02 29.4 HD
## 9 GCC 0.798 5.69 198.166 8.99e-05 28.5 ALL
## 10 NDVI 0.419 13.25 227.677 1.65e-01 27.6 LD
## 11 NDVI 0.436 12.65 304.249 1.53e-01 29.4 HD
## 12 NDVI 0.390 13.73 248.806 2.99e-02 28.6 ALL
## 13 Rveg 0.848 3.07 79.521 9.20e-03 27.4 LD
## 14 Rveg 0.832 7.22 71.863 1.13e-02 29.4 HD
## 15 Rveg 0.827 5.44 74.707 4.14e-05 28.3 ALL
## 16 RVI 0.668 6.95 43.909 4.71e-02 27.2 LD
## 17 RVI 0.700 8.31 47.568 3.77e-02 29.4 HD
## 18 RVI 0.663 7.88 45.099 1.27e-03 28.2 ALL
## 19 SAVI 0.419 13.25 151.815 1.65e-01 27.6 LD
## 20 SAVI 0.436 12.65 202.871 1.53e-01 29.4 HD
## 21 SAVI 0.390 13.73 165.903 2.99e-02 28.5 ALL
.df <- data.frame(x = site_mean_11\(Veg_pixels/1250, y = site_mean_11\)Ct, z = site_mean_11$Density)
# Build a function for ploting relationship between carbon and vis
f_plot<-function(data,index,name,outname){
.df <- data.frame(x = data[[index]], y = data$Ct, z = data$Density)
.plot <- ggplot(data = .df, aes(x = x, y = y, col = z, shape = z)) + geom_point(aes(cex = 3)) + stat_smooth(aes(fill = z), method =
"lm", se = FALSE) + scale_colour_brewer(palette = "Set1") + xlab(name) +
xlim(min(.df$x),max(.df$x))+ylim(0, 45)+
ylab("Carbon storage (Ct) (t/ha)") + labs(colour = "Density", shape = "Density", fill = "Density") + theme_bw(base_size = 14, base_family = "Times") +
theme(legend.position = "right")+
geom_abline(size=1,intercept = lm(.df$y~.df$x)$coefficients[1], slope = lm(.df$y~.df$x)$coefficients[2])
print(.plot)
ggsave(paste("results/",outname,sep=""),.plot)
rm(.df, .plot)
}
# Whole site
f_plot(site_mean_11,"RVI","RVI","RVI_R.pdf")
f_plot(site_mean_11,"Rveg","Rveg","Rveg_R.pdf")
f_plot(site_mean_11,"FVC","FVC","FVC_R.pdf")
f_plot(site_mean_11,"GCC","GCC","GCC_R.pdf")
f_plot(site_mean_11,"EG","EG","EG_R.pdf")
# only veg pixels in each site
f_plot(site_veg_mean_11,"RVI","RVI","RVI_VEG_R.pdf")
f_plot(site_veg_mean_11,"GCC","GCC","GCC_VEG_R.pdf")
f_plot(site_veg_mean_11,"EG","EG","EG_R.pdf")
# Whole site
f_plot(site_mean_10,"RVI","RVI","RVI_R.pdf")
f_plot(site_mean_10,"Rveg","Rveg","Rveg_R.pdf")
f_plot(site_mean_10,"FVC","FVC","FVC_R.pdf")
f_plot(site_mean_10,"GCC","GCC","GCC_R.pdf")
f_plot(site_mean_10,"EG","EG","EG_R.pdf")
# only veg pixels in each site
f_plot(site_veg_mean_10,"RVI","RVI","RVI_VEG_R.pdf")
f_plot(site_veg_mean_10,"GCC","GCC","GCC_VEG_R.pdf")
f_plot(site_veg_mean_10,"EG","EG","EG_R.pdf")
library(smatr)
a<-site_mean_11
a$Site[a$Density=="HD"]<-1
a$Site[a$Density=="LD"]<-2
with(a, slope.com(RVI,Ct,Site, method = 'SMA', alpha = 0.05))
## $LR
## [1] 0.7459778
##
## $p
## [1] 0.3877527
##
## $b
## [1] 0.004453623
##
## $ci
## [1] 0.003321831 0.006340080
##
## $varb
## [1] 2.923973e-07
##
## $lambda
## [1] 1.983476e-05
##
## $bs
## 1 2
## slope 0.004218641 0.005546200
## lower.CI.lim 0.002937351 0.002870149
## upper.CI.lim 0.006058836 0.010717329
##
## $df
## [1] 1
with(a, slope.com(Rveg,Ct,Site, method = 'SMA', alpha = 0.05))
## $LR
## [1] 0.09119924
##
## $p
## [1] 0.7626581
##
## $b
## [1] 0.01209224
##
## $ci
## [1] 0.008628563 0.017014310
##
## $varb
## [1] 2.957932e-06
##
## $lambda
## [1] 0.0001462223
##
## $bs
## 1 2
## slope 0.012689036 0.011577007
## lower.CI.lim 0.007373859 0.006893115
## upper.CI.lim 0.021835466 0.019443615
##
## $df
## [1] 1
a<-site_mean_10
a$Site[a$Density=="HD"]<-1
a$Site[a$Density=="LD"]<-2
with(a, slope.com(RVI,Ct,Site, method = 'SMA', alpha = 0.05))
## $LR
## [1] 0.3546547
##
## $p
## [1] 0.55149
##
## $b
## [1] -0.01019141
##
## $ci
## [1] -0.022145458 -0.004713874
##
## $varb
## [1] 1.229988e-05
##
## $lambda
## [1] 0.0001038649
##
## $bs
## 1 2
## slope -0.008215308 0.012752331
## lower.CI.lim -0.002733814 0.004176329
## upper.CI.lim -0.024687593 0.038938974
##
## $df
## [1] 1
with(a, slope.com(Rveg,Ct,Site, method = 'SMA', alpha = 0.05))
## $LR
## [1] 0.09119924
##
## $p
## [1] 0.7626581
##
## $b
## [1] 0.01209224
##
## $ci
## [1] 0.008628563 0.017014310
##
## $varb
## [1] 2.957932e-06
##
## $lambda
## [1] 0.0001462223
##
## $bs
## 1 2
## slope 0.012689036 0.011577007
## lower.CI.lim 0.007373859 0.006893115
## upper.CI.lim 0.021835466 0.019443615
##
## $df
## [1] 1
#-----------
# difference between saltbush and pastureof for each VI
f_diff<-function(data,var){
#require(Hmisc)
#print(describe(data$VEG))
a<-t.test(data[data$VEG==0,var],data[data$VEG==1,var])
return(c(var,a$p.value))
}
diff_11<-sapply(vars[-length(vars)],f_diff,data=data_11_f)
diff_11<-data.frame(t(diff_11))
diff_11[[2]]<-as.numeric(as.character(diff_11[[2]]))
names(diff_11)<-c("VIs","P")
print(diff_11,digits=4)
## VIs P
## BLUE BLUE 0.000e+00
## GREEN GREEN 0.000e+00
## RED RED 0.000e+00
## NIR NIR 7.452e-143
## NDVI NDVI 0.000e+00
## RVI RVI 0.000e+00
## SAVI SAVI 0.000e+00
## GCC GCC 0.000e+00
## EG EG 0.000e+00
## FVC FVC 0.000e+00
# difference of VIS between 2011 and 2010
f_diff_sea<-function(data1,data2,var){
#require(Hmisc)
#print(describe(data1$VEG))
#print(describe(data2$VEG))
a0<-t.test(data1[data1$VEG==0,var],data2[data2$VEG==0,var])
a1<-t.test(data1[data1$VEG==1,var],data2[data2$VEG==1,var])
return(c(var,a0$p.value,mean(data1[data1$VEG==0,var]),mean(data2[data2$VEG==0,var]),a1$p.value,mean(data1[data1$VEG==1,var]),mean(data2[data2$VEG==1,var])))
}
diff_sea<-sapply(vars[-length(vars)],f_diff_sea,data1=data_10_f,data2=data_11_f)
diff_sea<-data.frame(t(diff_sea))
for(i in c(2:7)){diff_sea[[i]]<-as.numeric(as.character(diff_sea[[i]]))}
names(diff_sea)<-c("VIs","P_soil","mean_10_soil","mean_11_soil","P_saltbush","mean_10_veg","mean_11_veg")
print(diff_sea,digits=4)
## VIs P_soil mean_10_soil mean_11_soil P_saltbush mean_10_veg
## BLUE BLUE 0.000e+00 884.7444 1331.60403 0.000e+00 725.1085
## GREEN GREEN 0.000e+00 1263.7646 1531.27492 4.041e-270 1077.3630
## RED RED 0.000e+00 1438.1830 1864.73045 0.000e+00 1110.4405
## NIR NIR 0.000e+00 1866.9595 2327.47008 0.000e+00 1912.4932
## NDVI NDVI 0.000e+00 0.1306 0.10995 5.128e-73 0.2598
## RVI RVI 0.000e+00 1.3057 1.24990 2.725e-56 1.7940
## SAVI SAVI 0.000e+00 0.1959 0.16491 4.573e-73 0.3896
## GCC GCC 0.000e+00 0.3509 0.32245 0.000e+00 0.3685
## EG EG 0.000e+00 204.6019 -133.78463 0.000e+00 319.1769
## FVC FVC 6.058e-248 0.1219 0.08286 2.559e-23 0.4790
## mean_11_veg
## BLUE 977.5688
## GREEN 1215.8140
## RED 1387.8080
## NIR 2506.9705
## NDVI 0.2844
## RVI 1.9035
## SAVI 0.4266
## GCC 0.3382
## EG 66.2512
## FVC 0.5145
P_veg<-summary(as.factor(data_11_f$VEG))/length(data_11_f$VEG)
names(P_veg)<-c("Nonveg","Veg")
print(P_veg)
## Nonveg Veg
## 0.4647747 0.5352253
#----------------------
Anova_data<-rbind(cbind(data_11_f,YEAR=2011),cbind(data_10_f,YEAR=2010))
Anova_data$YEAR<-as.factor(Anova_data$YEAR)
Anova_data$VEG<-as.factor(Anova_data$VEG)
Anova_data$group<-NA
# define different groups
Anova_data$group[Anova_data$YEAR==2010 & Anova_data$VEG==0]<-"A"
Anova_data$group[Anova_data$YEAR==2010 & Anova_data$VEG==1]<-"B"
Anova_data$group[Anova_data$YEAR==2011 & Anova_data$VEG==0]<-"C"
Anova_data$group[Anova_data$YEAR==2011 & Anova_data$VEG==1]<-"D"
Anova_data$group<-as.factor(Anova_data$group)
summary(Anova_data)
## ID Site VEG BLUE GREEN
## Min. : 52551 Min. : 1.0 0:27906 Min. : 275.0 Min. : 239
## 1st Qu.:360487 1st Qu.: 6.0 1:32136 1st Qu.: 715.0 1st Qu.: 985
## Median :638706 Median :13.0 Median : 903.0 Median :1255
## Mean :574939 Mean :12.5 Mean : 970.7 Mean :1263
## 3rd Qu.:788819 3rd Qu.:19.0 3rd Qu.:1201.0 3rd Qu.:1510
## Max. :996072 Max. :24.0 Max. :2628.0 Max. :2490
## RED NIR NDVI mNDVI
## Min. : 289 Min. : 491 Min. :-0.08606 Min. :-39.0000
## 1st Qu.:1114 1st Qu.:1756 1st Qu.: 0.11549 1st Qu.: 0.2795
## Median :1403 Median :2089 Median : 0.16071 Median : 0.3757
## Mean :1436 Mean :2157 Mean : 0.20155 Mean : 0.4174
## 3rd Qu.:1733 3rd Qu.:2505 3rd Qu.: 0.25249 3rd Qu.: 0.5400
## Max. :3186 Max. :5078 Max. : 0.77447 Max. : 4.6471
## RVI REEI EVI SAVI
## Min. :0.8415 Min. :0.1271 Min. :-143.1818 Min. :-0.1290
## 1st Qu.:1.2611 1st Qu.:0.5968 1st Qu.: 0.2855 1st Qu.: 0.1732
## Median :1.3830 Median :0.7231 Median : 0.4264 Median : 0.2410
## Mean :1.5834 Mean :0.6794 Mean : 0.5608 Mean : 0.3023
## 3rd Qu.:1.6756 3rd Qu.:0.7929 3rd Qu.: 0.7229 3rd Qu.: 0.3787
## Max. :7.8678 Max. :1.1883 Max. : 270.0000 Max. : 1.1615
## MSAVI OSAVI mARI1 mARI2
## Min. :0.3119 Min. :-0.08605 Min. :0.4095 Min. : 299.2
## 1st Qu.:0.7070 1st Qu.: 0.11548 1st Qu.:0.8171 1st Qu.:1535.0
## Median :0.7769 Median : 0.16071 Median :0.8721 Median :1861.5
## Mean :0.8205 Mean : 0.20154 Mean :0.8879 Mean :1924.1
## 3rd Qu.:0.9031 3rd Qu.: 0.25247 3rd Qu.:0.9479 3rd Qu.:2261.6
## Max. :1.3729 Max. : 0.77443 Max. :1.5722 Max. :5524.6
## GCC EG FVC YEAR
## Min. :0.2153 Min. :-1034.0 Min. :-0.40205 2010:30021
## 1st Qu.:0.3273 1st Qu.: -72.0 1st Qu.: 0.08868 2011:30021
## Median :0.3444 Median : 114.0 Median : 0.20654
## Mean :0.3456 Mean : 119.6 Mean : 0.31347
## 3rd Qu.:0.3628 3rd Qu.: 293.0 3rd Qu.: 0.44608
## Max. :0.4616 Max. : 1236.0 Max. : 1.72677
## group
## A:13953
## B:16068
## C:13953
## D:16068
##
##
ano_result<-c(NA)
f_anov<-function(data,var){
.a<-anova(lm(data[[var]] ~ group, data))
m1<-aov(data[[var]] ~ group,data=data)
.c<-TukeyHSD(m1)
return(c(var,.c$group[,4]))
}
anov_result<-sapply(vars[-length(vars)],f_anov,data=Anova_data)
anov_result<-data.frame(t(anov_result))
for(i in c(2:7)){anov_result[[i]]<-as.numeric(as.character(anov_result[[i]]))}
names(anov_result)[1]<-c("VIs")
print(anov_result,digits=4)
## VIs B.A C.A D.A C.B D.B D.C
## BLUE BLUE 0.000e+00 0.000e+00 0 0 0 0
## GREEN GREEN 0.000e+00 0.000e+00 0 0 0 0
## RED RED 0.000e+00 0.000e+00 0 0 0 0
## NIR NIR 1.353e-12 0.000e+00 0 0 0 0
## NDVI NDVI 0.000e+00 0.000e+00 0 0 0 0
## RVI RVI 0.000e+00 3.719e-14 0 0 0 0
## SAVI SAVI 0.000e+00 0.000e+00 0 0 0 0
## GCC GCC 0.000e+00 0.000e+00 0 0 0 0
## EG EG 0.000e+00 0.000e+00 0 0 0 0
## FVC FVC 0.000e+00 0.000e+00 0 0 0 0
.linshi<-melt(Anova_data[c(2,4:21)],id=c(1,19))
site_sta<-dcast(.linshi,Site+YEAR~variable,mean)
site_sta<-merge(site_sta,AGB,by="Site",all.y=T)
site_sta<-site_sta[c("Density","Name","YEAR","NDVI","RVI","SAVI","GCC","EG","FVC","Ct")]
site_sta<-arrange(site_sta,desc(Density),Name,YEAR)
print(site_sta[-1],digits=3)
## Name YEAR NDVI RVI SAVI GCC EG FVC Ct
## 1 S1An1LD 2010 0.128 1.30 0.191 0.351 196.4 0.1135 19.3
## 2 S1An1LD 2011 0.127 1.30 0.190 0.327 -58.8 0.1242 19.3
## 3 S1An2LD 2010 0.114 1.26 0.170 0.353 227.7 0.0750 18.1
## 4 S1An2LD 2011 0.111 1.26 0.166 0.327 -85.4 0.0854 18.1
## 5 S1An3LD 2010 0.224 1.60 0.336 0.373 355.7 0.3796 26.8
## 6 S1An3LD 2011 0.143 1.35 0.214 0.330 -44.5 0.1644 26.8
## 7 S2An1LD 2010 0.158 1.38 0.237 0.363 314.7 0.1979 32.9
## 8 S2An1LD 2011 0.154 1.38 0.231 0.327 -62.3 0.1913 32.9
## 9 S2An2LD 2010 0.135 1.32 0.203 0.362 293.4 0.1346 41.7
## 10 S2An2LD 2011 0.160 1.40 0.239 0.329 -43.9 0.2055 41.7
## 11 S2An3LD 2010 0.139 1.33 0.209 0.355 232.7 0.1462 18.8
## 12 S2An3LD 2011 0.138 1.34 0.207 0.327 -73.1 0.1527 18.8
## 13 S1An1HD 2010 0.165 1.40 0.247 0.362 309.0 0.2159 23.8
## 14 S1An1HD 2011 0.131 1.31 0.197 0.331 -36.7 0.1353 23.8
## 15 S1An2HD 2010 0.135 1.32 0.203 0.361 298.6 0.1352 14.8
## 16 S1An2HD 2011 0.111 1.25 0.166 0.327 -83.2 0.0850 14.8
## 17 S1An3HD 2010 0.202 1.52 0.303 0.371 390.0 0.3185 22.1
## 18 S1An3HD 2011 0.127 1.30 0.191 0.332 -28.1 0.1257 22.1
## 19 S2An1HD 2010 0.131 1.30 0.196 0.352 192.1 0.1230 42.5
## 20 S2An1HD 2011 0.150 1.36 0.224 0.329 -37.7 0.1810 42.5
## 21 S2An2HD 2010 0.119 1.27 0.179 0.353 209.1 0.0905 24.5
## 22 S2An2HD 2011 0.132 1.31 0.198 0.329 -46.1 0.1383 24.5
## 23 S2An3HD 2010 0.142 1.33 0.213 0.356 232.6 0.1536 39.3
## 24 S2An3HD 2011 0.153 1.38 0.230 0.331 -16.3 0.1905 39.3
site_sta[4:8]<-round(site_sta[4:8],3)
names(site_sta)<-c("Density","Plot name","Year","NDVI","RVI","SAVI","FVC","Sequestered carbon (C, t/ha)")
write.table(site_sta[-1],"results/site_sta.txt",sep="&",row.names = F)
Rho[2:5]<-round(Rho[2:5],3)
write.table(Rho,"results/Rho.txt",sep="&",row.names = F)
diff_sea[-1]<-round(diff_sea[-1],3)
write.table(diff_sea[c(1,3,6,4,7)],"results/diff_sea.txt",sep="&",row.names = F)