This is an introduction file for paper about Wickepin biomass process.

1 dataset

  1. original images in “24_03-11” and “28_09-10”

  2. original images were atmosphericed by Quick atmospheric method in ENVI

  3. for this study the data was cliped to sites area (Folder “data/”)

  4. the images were classificated by Ecognition 8.4 (Folder “yikang/”)

  5. all the result files are saved in (Folder “results/”)

  6. all the result images are saved in (Folder “images/”)

2 process

2.1 load libraries

library(caTools)
library(raster)
#library(ncdf)
library(plyr)
library(ggplot2)
library(lattice)
library(reshape2)
library(hydroGOF)
library(Hmisc)

2.2 load input data

data_11<-read.ENVI("data/W_24_03-11-AC")

class_11<-read.ENVI("yikang/class_saltbush_dissolve") # vegetation classifation result based on ecognition

data_10<-read.ENVI("data/W_28_09-10-AC")

site_buf<-read.ENVI("data/W_Site_buffer_round") # site boundary

AGB<-read.csv("data/AGB.csv",header = T) # biomass data

vars<-c("BLUE","GREEN","RED","NIR", "NDVI","RVI","SAVI","GCC","EG","FVC","Rveg")
# c("BLUE","GREEN","RED","NIR", "NDVI","mNDVI","RVI","REEI","EVI", "SAVI","MSAVI","OSAVI","mARI1","mARI2","FVC","Rveg")

2.3 Convert data to dataframe

data_11_f<-data.frame(ID=c(1:(nrow(data_11)*ncol(data_11))),BLUE=as.integer(data_11[,,1]),GREEN=as.integer(data_11[,,2]),RED=as.integer(data_11[,,3]),NIR=as.integer(data_11[,,4]))

summary(data_11_f)
##        ID               BLUE          GREEN           RED      
##  Min.   :      1   Min.   : 162   Min.   :  97   Min.   :  67  
##  1st Qu.: 257078   1st Qu.:1162   1st Qu.:1397   1st Qu.:1730  
##  Median : 514156   Median :1388   Median :1611   Median :1986  
##  Mean   : 514156   Mean   :1429   Mean   :1605   Mean   :1973  
##  3rd Qu.: 771233   3rd Qu.:1634   3rd Qu.:1861   3rd Qu.:2264  
##  Max.   :1028310   Max.   :4620   Max.   :2749   Max.   :3532  
##       NIR      
##  Min.   : 278  
##  1st Qu.:2248  
##  Median :2484  
##  Mean   :2538  
##  3rd Qu.:2787  
##  Max.   :5725
data_10_f<-data.frame(ID=c(1:(nrow(data_10)*ncol(data_10))),BLUE=as.integer(data_10[,,1]),GREEN=as.integer(data_10[,,2]),RED=as.integer(data_10[,,3]),NIR=as.integer(data_10[,,4]))

summary(data_10_f)
##        ID               BLUE          GREEN           RED      
##  Min.   :      1   Min.   : 190   Min.   : 283   Min.   : 300  
##  1st Qu.: 257078   1st Qu.: 750   1st Qu.:1116   1st Qu.:1214  
##  Median : 514156   Median : 896   Median :1297   Median :1424  
##  Mean   : 514156   Mean   :1043   Mean   :1362   Mean   :1591  
##  3rd Qu.: 771233   3rd Qu.:1258   3rd Qu.:1725   3rd Qu.:1983  
##  Max.   :1028310   Max.   :3007   Max.   :2300   Max.   :3006  
##       NIR      
##  Min.   : 485  
##  1st Qu.:1750  
##  Median :1944  
##  Mean   :2028  
##  3rd Qu.:2302  
##  Max.   :4300
site_info<-data.frame(ID=c(1:(nrow(site_buf)*ncol(site_buf))),Site=as.integer(site_buf),VEG=as.integer(class_11))

summary(site_info)
##        ID               Site            VEG        
##  Min.   :      1   Min.   :  0.0   Min.   :0.0000  
##  1st Qu.: 257078   1st Qu.:255.0   1st Qu.:0.0000  
##  Median : 514156   Median :255.0   Median :0.0000  
##  Mean   : 514156   Mean   :214.1   Mean   :0.1917  
##  3rd Qu.: 771233   3rd Qu.:255.0   3rd Qu.:0.0000  
##  Max.   :1028310   Max.   :255.0   Max.   :1.0000

2.4 Calculate number of pixels for each site

Here the round boundary for each site was used. This boundary was built by using the central point of each site as the Circ+pt and 10cm as the radius.

Therefore, for each site, there is 1250 pixels totally.

The number of pixels for vegetation in each site can be calculated by below code.

.linshi<-melt(site_info[site_info$VEG==1,-3],id=c(2))
N_pixels<-dcast(.linshi,Site~variable,length)
names(N_pixels)[2]<-c("Veg_pixels")

2.5 Calculate vegetation indices

2.5.1 data_11

attach(data_11_f)
#---VIs
# NDVI (NIR-RED/NIR+RED)
data_11_f$NDVI<-(NIR-RED)/(NIR+RED)

# mNDVI (NIR-RED/NIR+RED)
data_11_f$mNDVI<-(NIR-RED)/((NIR+RED)-2*BLUE)

#RVI (NIR/RED)
data_11_f$RVI<-(NIR/RED)
data_11_f$REEI<-(RED/NIR)

#EVI (2.5*(NIR-RED)/(NIR+6RED-7.5blue+1))
data_11_f$EVI<-2.5*(NIR-RED)/(NIR+6*RED-7.5*BLUE+1)

#SAVI (1+0.5)(NIR-RED)/(NIR+RED+0.5)
data_11_f$SAVI<-1.5*(NIR-RED)/(NIR+RED+0.5)

# MSAVI 
data_11_f$MSAVI<-(2*(NIR+1)-sqrt((2*NIR+1)^2-8*(NIR-RED)))/2

#OSAVI
data_11_f$OSAVI<-(NIR-RED)/(NIR+RED+0.16)

# mARI1
data_11_f$mARI1=(GREEN-1)/(RED-1)

# mARI2
data_11_f$mARI2=NIR*(GREEN-1)/(RED-1)

#GCC
data_11_f$GCC=GREEN/(GREEN+RED+BLUE)

#EG
data_11_f$EG=2*GREEN-RED-BLUE

detach(data_11_f)

summary(data_11_f)
##        ID               BLUE          GREEN           RED      
##  Min.   :      1   Min.   : 162   Min.   :  97   Min.   :  67  
##  1st Qu.: 257078   1st Qu.:1162   1st Qu.:1397   1st Qu.:1730  
##  Median : 514156   Median :1388   Median :1611   Median :1986  
##  Mean   : 514156   Mean   :1429   Mean   :1605   Mean   :1973  
##  3rd Qu.: 771233   3rd Qu.:1634   3rd Qu.:1861   3rd Qu.:2264  
##  Max.   :1028310   Max.   :4620   Max.   :2749   Max.   :3532  
##       NIR            NDVI             mNDVI                 RVI        
##  Min.   : 278   Min.   :-0.2821   Min.   :-1089.0000   Min.   : 0.560  
##  1st Qu.:2248   1st Qu.: 0.0830   1st Qu.:    0.2324   1st Qu.: 1.181  
##  Median :2484   Median : 0.1003   Median :    0.2992   Median : 1.223  
##  Mean   :2538   Mean   : 0.1303   Mean   :       Inf   Mean   : 1.348  
##  3rd Qu.:2787   3rd Qu.: 0.1291   3rd Qu.:    0.3790   3rd Qu.: 1.297  
##  Max.   :5725   Max.   : 0.8250   Max.   :       Inf   Max.   :10.430  
##       REEI              EVI                 SAVI             MSAVI        
##  Min.   :0.09587   Min.   :-4160.000   Min.   :-0.4229   Min.   :-0.2840  
##  1st Qu.:0.77128   1st Qu.:    0.227   1st Qu.: 0.1245   1st Qu.: 0.6533  
##  Median :0.81776   Median :    0.327   Median : 0.1504   Median : 0.6822  
##  Mean   :0.78012   Mean   :      Inf   Mean   : 0.1955   Mean   : 0.7198  
##  3rd Qu.:0.84672   3rd Qu.:    0.460   3rd Qu.: 0.1937   3rd Qu.: 0.7287  
##  Max.   :1.78571   Max.   :      Inf   Max.   : 1.2374   Max.   : 1.4041  
##      OSAVI             mARI1            mARI2             GCC        
##  Min.   :-0.2820   Min.   :0.2261   Min.   : 117.8   Min.   :0.1181  
##  1st Qu.: 0.0830   1st Qu.:0.7784   1st Qu.:1809.6   1st Qu.:0.3159  
##  Median : 0.1003   Median :0.8217   Median :2025.9   Median :0.3227  
##  Mean   : 0.1303   Mean   :0.8188   Mean   :2081.7   Mean   :0.3221  
##  3rd Qu.: 0.1291   3rd Qu.:0.8548   3rd Qu.:2323.3   3rd Qu.:0.3286  
##  Max.   : 0.8250   Max.   :1.9721   Max.   :8125.0   Max.   :0.5201  
##        EG         
##  Min.   :-3023.0  
##  1st Qu.: -256.0  
##  Median : -157.0  
##  Mean   : -192.5  
##  3rd Qu.:  -68.0  
##  Max.   : 1094.0

2.5.2 data_10

attach(data_10_f)
#---VIs
# NDVI (NIR-RED/NIR+RED)
data_10_f$NDVI<-(NIR-RED)/(NIR+RED)

# mNDVI (NIR-RED/NIR+RED)
data_10_f$mNDVI<-(NIR-RED)/((NIR+RED)-2*BLUE)

#RVI (NIR/RED)
data_10_f$RVI<-(NIR/RED)
data_10_f$REEI<-(RED/NIR)

#EVI (2.5*(NIR-RED)/(NIR+6RED-7.5blue+1))
data_10_f$EVI<-2.5*(NIR-RED)/(NIR+6*RED-7.5*BLUE+1)

#SAVI (1+0.5)(NIR-RED)/(NIR+RED+0.5)
data_10_f$SAVI<-1.5*(NIR-RED)/(NIR+RED+0.5)

# MSAVI 
data_10_f$MSAVI<-(2*(NIR+1)-sqrt((2*NIR+1)^2-8*(NIR-RED)))/2

#OSAVI
data_10_f$OSAVI<-(NIR-RED)/(NIR+RED+0.16)

# mARI1
data_10_f$mARI1=(GREEN-1)/(RED-1)

# mARI2
data_10_f$mARI2=NIR*(GREEN-1)/(RED-1)

#GCC
data_10_f$GCC=GREEN/(GREEN+RED+BLUE)

#EG
data_10_f$EG=2*GREEN-RED-BLUE

detach(data_10_f)

summary(data_10_f)
##        ID               BLUE          GREEN           RED      
##  Min.   :      1   Min.   : 190   Min.   : 283   Min.   : 300  
##  1st Qu.: 257078   1st Qu.: 750   1st Qu.:1116   1st Qu.:1214  
##  Median : 514156   Median : 896   Median :1297   Median :1424  
##  Mean   : 514156   Mean   :1043   Mean   :1362   Mean   :1591  
##  3rd Qu.: 771233   3rd Qu.:1258   3rd Qu.:1725   3rd Qu.:1983  
##  Max.   :1028310   Max.   :3007   Max.   :2300   Max.   :3006  
##       NIR            NDVI              mNDVI             RVI        
##  Min.   : 485   Min.   :-0.17037   Min.   :  -Inf   Min.   :0.7089  
##  1st Qu.:1750   1st Qu.: 0.05948   1st Qu.:0.1602   1st Qu.:1.1265  
##  Median :1944   Median : 0.13032   Median :0.2925   Median :1.2997  
##  Mean   :2028   Mean   : 0.13530   Mean   :   NaN   Mean   :1.3604  
##  3rd Qu.:2302   3rd Qu.: 0.18077   3rd Qu.:0.3889   3rd Qu.:1.4413  
##  Max.   :4300   Max.   : 0.78229   Max.   :   Inf   Max.   :8.1866  
##       REEI             EVI                  SAVI             MSAVI        
##  Min.   :0.1222   Min.   :-1195.0000   Min.   :-0.2555   Min.   :0.08963  
##  1st Qu.:0.6938   1st Qu.:    0.1472   1st Qu.: 0.0892   1st Qu.:0.61225  
##  Median :0.7694   Median :    0.2985   Median : 0.1954   Median :0.73054  
##  Mean   :0.7758   Mean   :    0.3314   Mean   : 0.2029   Mean   :0.72418  
##  3rd Qu.:0.8877   3rd Qu.:    0.4365   3rd Qu.: 0.2711   3rd Qu.:0.80612  
##  Max.   :1.4107   Max.   : 1130.0000   Max.   : 1.1733   Max.   :1.37783  
##      OSAVI              mARI1            mARI2             GCC        
##  Min.   :-0.17036   Min.   :0.3145   Min.   : 240.2   Min.   :0.1887  
##  1st Qu.: 0.05947   1st Qu.:0.7988   1st Qu.:1567.7   1st Qu.:0.3319  
##  Median : 0.13031   Median :0.8915   Median :1755.2   Median :0.3544  
##  Mean   : 0.13529   Mean   :0.8829   Mean   :1773.8   Mean   :0.3476  
##  3rd Qu.: 0.18076   3rd Qu.:0.9518   3rd Qu.:1939.7   3rd Qu.:0.3658  
##  Max.   : 0.78226   Max.   :2.3018   Max.   :6083.2   Max.   :0.5552  
##        EG          
##  Min.   :-1917.00  
##  1st Qu.:  -18.00  
##  Median :  215.00  
##  Mean   :   90.46  
##  3rd Qu.:  323.00  
##  Max.   : 1578.00

2.6 Merge site inforation to dataframe

data_11_f<-cbind(site_info,data_11_f[-1])
data_10_f<-cbind(site_info,data_10_f[-1])

# delete data not in study site and soil pixels
data_11_f$Site[data_11_f$Site>25 |data_11_f$Site<1]<-NA
data_10_f$Site[data_10_f$Site>25 |data_10_f$Site<1]<-NA

#data_11_f$VEG[data_11_f$VEG==0]<-NA
data_11_f<-na.omit(data_11_f)
data_10_f<-na.omit(data_10_f)

summary(data_11_f)
##        ID              Site           VEG              BLUE     
##  Min.   : 52551   Min.   : 1.0   Min.   :0.0000   Min.   : 288  
##  1st Qu.:360487   1st Qu.: 6.0   1st Qu.:0.0000   1st Qu.: 883  
##  Median :638706   Median :13.0   Median :1.0000   Median :1151  
##  Mean   :574939   Mean   :12.5   Mean   :0.5352   Mean   :1142  
##  3rd Qu.:788819   3rd Qu.:19.0   3rd Qu.:1.0000   3rd Qu.:1359  
##  Max.   :996072   Max.   :24.0   Max.   :1.0000   Max.   :2628  
##      GREEN           RED            NIR            NDVI         
##  Min.   : 239   Min.   : 289   Min.   : 491   Min.   :-0.08606  
##  1st Qu.:1067   1st Qu.:1258   1st Qu.:2049   1st Qu.: 0.10940  
##  Median :1391   Median :1642   Median :2382   Median : 0.16009  
##  Mean   :1362   Mean   :1609   Mean   :2424   Mean   : 0.20334  
##  3rd Qu.:1628   3rd Qu.:1919   3rd Qu.:2772   3rd Qu.: 0.26220  
##  Max.   :2490   Max.   :3186   Max.   :5078   Max.   : 0.77447  
##      mNDVI               RVI              REEI             EVI           
##  Min.   :-39.0000   Min.   :0.8415   Min.   :0.1271   Min.   :-143.1818  
##  1st Qu.:  0.3010   1st Qu.:1.2457   1st Qu.:0.5845   1st Qu.:   0.3253  
##  Median :  0.4007   Median :1.3812   Median :0.7240   Median :   0.4721  
##  Mean   :  0.4422   Mean   :1.5997   Mean   :0.6787   Mean   :   0.6277  
##  3rd Qu.:  0.5714   3rd Qu.:1.7108   3rd Qu.:0.8028   3rd Qu.:   0.8004  
##  Max.   :  4.6471   Max.   :7.8678   Max.   :1.1883   Max.   : 270.0000  
##       SAVI             MSAVI            OSAVI              mARI1       
##  Min.   :-0.1290   Min.   :0.3119   Min.   :-0.08605   Min.   :0.4662  
##  1st Qu.: 0.1641   1st Qu.:0.6972   1st Qu.: 0.10940   1st Qu.:0.8021  
##  Median : 0.2401   Median :0.7760   Median : 0.16009   Median :0.8426  
##  Mean   : 0.3050   Mean   :0.8213   Mean   : 0.20333   Mean   :0.8489  
##  3rd Qu.: 0.3932   3rd Qu.:0.9154   3rd Qu.: 0.26219   3rd Qu.:0.8910  
##  Max.   : 1.1615   Max.   :1.3729   Max.   : 0.77443   Max.   :1.4313  
##      mARI2             GCC               EG          
##  Min.   : 299.2   Min.   :0.2153   Min.   :-1034.00  
##  1st Qu.:1700.7   1st Qu.:0.3212   1st Qu.: -152.00  
##  Median :2015.3   Median :0.3299   Median :  -43.00  
##  Mean   :2076.5   Mean   :0.3309   Mean   :  -26.72  
##  3rd Qu.:2418.3   3rd Qu.:0.3417   3rd Qu.:   97.00  
##  Max.   :5524.6   Max.   :0.4268   Max.   :  791.00
summary(data_10_f)
##        ID              Site           VEG              BLUE       
##  Min.   : 52551   Min.   : 1.0   Min.   :0.0000   Min.   : 275.0  
##  1st Qu.:360487   1st Qu.: 6.0   1st Qu.:0.0000   1st Qu.: 634.0  
##  Median :638706   Median :13.0   Median :1.0000   Median : 785.0  
##  Mean   :574939   Mean   :12.5   Mean   :0.5352   Mean   : 799.3  
##  3rd Qu.:788819   3rd Qu.:19.0   3rd Qu.:1.0000   3rd Qu.: 914.0  
##  Max.   :996072   Max.   :24.0   Max.   :1.0000   Max.   :2005.0  
##      GREEN           RED            NIR            NDVI         
##  Min.   : 383   Min.   : 400   Min.   : 682   Min.   :-0.04076  
##  1st Qu.: 928   1st Qu.:1027   1st Qu.:1627   1st Qu.: 0.12136  
##  Median :1168   Median :1267   Median :1867   Median : 0.16111  
##  Mean   :1164   Mean   :1263   Mean   :1891   Mean   : 0.19976  
##  3rd Qu.:1352   3rd Qu.:1468   3rd Qu.:2120   3rd Qu.: 0.24244  
##  Max.   :2199   Max.   :2679   Max.   :3697   Max.   : 0.70636  
##      mNDVI               RVI              REEI             EVI         
##  Min.   :-0.07901   Min.   :0.9217   Min.   :0.1721   Min.   :-8.0980  
##  1st Qu.: 0.25741   1st Qu.:1.2762   1st Qu.:0.6097   1st Qu.: 0.2499  
##  Median : 0.35241   Median :1.3841   Median :0.7225   Median : 0.3802  
##  Mean   : 0.39268   Mean   :1.5671   Mean   :0.6802   Mean   : 0.4939  
##  3rd Qu.: 0.50699   3rd Qu.:1.6400   3rd Qu.:0.7835   3rd Qu.: 0.6458  
##  Max.   : 1.23284   Max.   :5.8110   Max.   :1.0850   Max.   : 8.5783  
##       SAVI              MSAVI            OSAVI              mARI1       
##  Min.   :-0.06112   Min.   :0.4151   Min.   :-0.04075   Min.   :0.4095  
##  1st Qu.: 0.18201   1st Qu.:0.7164   1st Qu.: 0.12135   1st Qu.:0.8480  
##  Median : 0.24163   Median :0.7775   Median : 0.16110   Median :0.9162  
##  Mean   : 0.29959   Mean   :0.8197   Mean   : 0.19975   Mean   :0.9269  
##  3rd Qu.: 0.36357   3rd Qu.:0.8902   3rd Qu.: 0.24242   3rd Qu.:1.0027  
##  Max.   : 1.05938   Max.   :1.3279   Max.   : 0.70632   Max.   :1.5722  
##      mARI2             GCC               EG        
##  Min.   : 408.7   Min.   :0.2191   Min.   :-794.0  
##  1st Qu.:1436.1   1st Qu.:0.3476   1st Qu.: 131.0  
##  Median :1705.4   Median :0.3606   Median : 263.0  
##  Mean   :1771.7   Mean   :0.3604   Mean   : 265.9  
##  3rd Qu.:2063.6   3rd Qu.:0.3750   3rd Qu.: 401.0  
##  Max.   :4853.9   Max.   :0.4616   Max.   :1236.0

2.7 Calculate FVC

FVC is derived from NDVI, and to help distinguish vegetation and soil pixels NDVI values at 5% and 95% of the study area were selected as NDVIsoil and NDVIveg, respectively (Wu et al. 2004). Rveg is simply the proportion (%) of vegetation pixels compared to the total number of pixels.

#FVC=(NDVI-NDVIsoil)/(NDVIveg-NDVIsoil)

data_11_f$FVC<-(data_11_f$NDVI-quantile(data_11_f$NDVI, 0.05))/(quantile(data_11_f$NDVI, 0.95)-quantile(data_11_f$NDVI, 0.05))

data_10_f$FVC<-(data_10_f$NDVI-quantile(data_10_f$NDVI, 0.05))/(quantile(data_10_f$NDVI, 0.95)-quantile(data_10_f$NDVI, 0.05))

2.8 Merge Biomass and pixel number to dataframe

2.8.1 The whole site

# Get the mean VIs for each site
.linshi<-melt(data_11_f[c(-1,-3)],id=c(1))
site_mean_11<-dcast(.linshi,Site~variable,mean,na.rm=TRUE)

# Merge with ABG and N_pixels which was used to calculate Rveg 
site_mean_11<-merge(site_mean_11,AGB,by="Site",all.y=T)
site_mean_11<-merge(site_mean_11,N_pixels,by="Site",all.x=T)
site_mean_11$Rveg<-site_mean_11$Veg_pixels/1250
head(site_mean_11)
##   Site     BLUE    GREEN      RED      NIR      NDVI     mNDVI      RVI
## 1    3 1251.412 1463.091 1720.905 2248.138 0.1323445 0.3556694 1.312914
## 2    4 1150.087 1365.044 1596.349 2173.728 0.1534737 0.3912133 1.378765
## 3    7 1158.619 1416.218 1736.070 2355.169 0.1537679 0.3483549 1.380388
## 4    8 1083.016 1280.325 1515.360 2057.573 0.1496345 0.3783016 1.363077
## 5   11 1088.809 1308.681 1572.494 2159.667 0.1595254 0.3769048 1.399254
## 6   12 1175.474 1422.486 1742.642 2281.863 0.1381761 0.3280308 1.339342
##        REEI       EVI      SAVI     MSAVI     OSAVI     mARI1    mARI2
## 1 0.7693612 0.4357775 0.1984914 0.7306002 0.1323391 0.8502275 1922.480
## 2 0.7395435 0.5215826 0.2301789 0.7604135 0.1534670 0.8576070 1880.175
## 3 0.7393226 0.4101167 0.2306222 0.7606376 0.1537616 0.8150715 1938.100
## 4 0.7436494 0.4705997 0.2244201 0.7563054 0.1496278 0.8441791 1753.005
## 5 0.7309390 0.4698508 0.2392545 0.7690167 0.1595183 0.8333135 1817.213
## 6 0.7634840 0.4023200 0.2072364 0.7364776 0.1381702 0.8194847 1882.473
##         GCC        EG       FVC Density    Name        Y5        Y6
## 1 0.3292444 -46.13440 0.1382554      HD S2An2HD 11.078032  7.271884
## 2 0.3311611 -16.34800 0.1905260      HD S2An3HD  8.601376  9.932828
## 3 0.3272377 -62.25300 0.1912536      LD S2An1LD  6.580034 10.962102
## 4 0.3290658 -37.72516 0.1810283      HD S2An1HD 15.899325 13.901538
## 5 0.3286287 -43.94099 0.2054970      LD S2An2LD 12.376185 12.227722
## 6 0.3269435 -73.14240 0.1526819      LD S2An3LD 10.612028  5.449810
##         Y7        Y8        Y9       Y11     Ct Veg_pixels   Rveg
## 1 10.05684  7.695246  9.305107 10.945360 24.512        277 0.2216
## 2 10.64388 10.864941 13.347178 17.544068 39.336        568 0.4544
## 3 11.77028 12.158156 14.532373 14.902354 32.888        500 0.4000
## 4 15.86886 14.635193 17.084150 17.385223 42.503        504 0.4032
## 5 12.45627 12.243385 15.576473 19.018632 41.707        523 0.4184
## 6  5.50925  5.612370  6.121482  8.329726 18.811        307 0.2456
summary(site_mean_11)
##       Site            BLUE          GREEN           RED      
##  Min.   : 3.00   Min.   :1083   Min.   :1280   Min.   :1515  
##  1st Qu.: 7.75   1st Qu.:1156   1st Qu.:1363   1st Qu.:1603  
##  Median :13.00   Median :1213   Median :1443   Median :1739  
##  Mean   :12.75   Mean   :1244   Mean   :1460   Mean   :1727  
##  3rd Qu.:16.75   3rd Qu.:1331   3rd Qu.:1533   3rd Qu.:1801  
##  Max.   :23.00   Max.   :1470   Max.   :1690   Max.   :1937  
##                                                              
##       NIR            NDVI            mNDVI             RVI       
##  Min.   :2058   Min.   :0.1108   Min.   :0.3195   Min.   :1.253  
##  1st Qu.:2170   1st Qu.:0.1271   1st Qu.:0.3400   1st Qu.:1.300  
##  Median :2265   Median :0.1353   Median :0.3557   Median :1.326  
##  Mean   :2265   Mean   :0.1364   Mean   :0.3562   Mean   :1.329  
##  3rd Qu.:2358   3rd Qu.:0.1506   3rd Qu.:0.3772   3rd Qu.:1.367  
##  Max.   :2484   Max.   :0.1595   Max.   :0.3912   Max.   :1.399  
##                                                                  
##       REEI             EVI              SAVI            MSAVI       
##  Min.   :0.7309   Min.   :0.3707   Min.   :0.1662   Min.   :0.6972  
##  1st Qu.:0.7426   1st Qu.:0.4082   1st Qu.:0.1906   1st Qu.:0.7218  
##  Median :0.7664   Median :0.4378   Median :0.2029   Median :0.7335  
##  Mean   :0.7646   Mean   :0.4432   Mean   :0.2046   Mean   :0.7353  
##  3rd Qu.:0.7781   3rd Qu.:0.4754   3rd Qu.:0.2259   3rd Qu.:0.7573  
##  Max.   :0.8028   Max.   :0.5216   Max.   :0.2393   Max.   :0.7690  
##                                                                     
##      OSAVI            mARI1            mARI2           GCC        
##  Min.   :0.1108   Min.   :0.8151   Min.   :1753   Min.   :0.3269  
##  1st Qu.:0.1271   1st Qu.:0.8415   1st Qu.:1864   1st Qu.:0.3273  
##  Median :0.1353   Median :0.8472   Median :1910   Median :0.3288  
##  Mean   :0.1364   Mean   :0.8459   Mean   :1928   Mean   :0.3289  
##  3rd Qu.:0.1506   3rd Qu.:0.8577   3rd Qu.:1969   3rd Qu.:0.3304  
##  Max.   :0.1595   Max.   :0.8764   Max.   :2177   Max.   :0.3319  
##                                                                   
##        EG              FVC         Density      Name         Y5        
##  Min.   :-85.35   Min.   :0.0850   HD:6    S1An1HD:1   Min.   : 6.144  
##  1st Qu.:-64.98   1st Qu.:0.1253   LD:6    S1An1LD:1   1st Qu.: 6.567  
##  Median :-45.33   Median :0.1455           S1An2HD:1   Median : 9.607  
##  Mean   :-51.35   Mean   :0.1483           S1An2LD:1   Mean   : 9.760  
##  3rd Qu.:-37.46   3rd Qu.:0.1834           S1An3HD:1   3rd Qu.:12.099  
##  Max.   :-16.35   Max.   :0.2055           S1An3LD:1   Max.   :15.899  
##                                            (Other):6                   
##        Y6               Y7               Y8               Y9        
##  Min.   : 4.866   Min.   : 5.509   Min.   : 4.236   Min.   : 5.253  
##  1st Qu.: 5.931   1st Qu.: 6.522   1st Qu.: 5.602   1st Qu.: 7.717  
##  Median : 8.158   Median :10.350   Median : 7.992   Median :10.243  
##  Mean   : 8.480   Mean   : 9.598   Mean   : 8.527   Mean   :10.667  
##  3rd Qu.:10.842   3rd Qu.:11.552   3rd Qu.:11.188   3rd Qu.:13.643  
##  Max.   :13.902   Max.   :15.869   Max.   :14.635   Max.   :17.084  
##                                                                     
##       Y11               Ct          Veg_pixels         Rveg       
##  Min.   : 4.314   Min.   :14.77   Min.   : 87.0   Min.   :0.0696  
##  1st Qu.: 9.780   1st Qu.:19.19   1st Qu.:273.2   1st Qu.:0.2186  
##  Median :12.193   Median :24.15   Median :358.0   Median :0.2864  
##  Mean   :12.352   Mean   :27.05   Mean   :361.7   Mean   :0.2893  
##  3rd Qu.:15.523   3rd Qu.:34.50   3rd Qu.:501.0   3rd Qu.:0.4008  
##  Max.   :19.019   Max.   :42.50   Max.   :568.0   Max.   :0.4544  
## 
# Get the mean VIs for each site
.linshi<-melt(data_10_f[c(-1,-3)],id=c(1))
site_mean_10<-dcast(.linshi,Site~variable,mean,na.rm=TRUE)

# Merge with ABG and N_pixels which was used to calculate Rveg 
site_mean_10<-merge(site_mean_10,AGB,by="Site",all.y=T)
site_mean_10<-merge(site_mean_10,N_pixels,by="Site",all.x=T)
site_mean_10$Rveg<-site_mean_10$Veg_pixels/1250
head(site_mean_10)
##   Site     BLUE    GREEN      RED      NIR      NDVI     mNDVI      RVI
## 1    3 803.8912 1197.510 1382.075 1757.196 0.1192529 0.2468313 1.272213
## 2    4 771.0528 1139.130 1274.610 1696.048 0.1420810 0.3005757 1.334485
## 3    7 846.7462 1237.726 1314.018 1808.871 0.1581124 0.3467331 1.381685
## 4    8 761.3237 1127.792 1302.133 1693.357 0.1309847 0.2702037 1.303843
## 5   11 812.3931 1209.103 1312.376 1723.586 0.1352068 0.2932069 1.318736
## 6   12 844.0008 1218.302 1359.949 1794.336 0.1393924 0.3007693 1.330889
##        REEI       EVI      SAVI     MSAVI     OSAVI     mARI1    mARI2
## 1 0.7875697 0.2408802 0.1788507 0.7123828 0.1192468 0.8659861 1526.202
## 2 0.7524999 0.3171752 0.2130849 0.7474450 0.1420732 0.8942779 1523.785
## 3 0.7291465 0.3881143 0.2371299 0.7707990 0.1581041 0.9414881 1713.778
## 4 0.7693978 0.2722649 0.1964438 0.7305498 0.1309776 0.8661033 1471.682
## 5 0.7641445 0.3115609 0.2027762 0.7358037 0.1351996 0.9223429 1599.170
## 6 0.7580588 0.3238652 0.2090541 0.7418900 0.1393850 0.8956121 1619.722
##         GCC       EG        FVC Density    Name        Y5        Y6
## 1 0.3531230 209.0528 0.09053319      HD S2An2HD 11.078032  7.271884
## 2 0.3564502 232.5960 0.15363325      HD S2An3HD  8.601376  9.932828
## 3 0.3633497 314.6878 0.19794644      LD S2An1LD  6.580034 10.962102
## 4 0.3521623 192.1266 0.12296169      HD S2An1HD 15.899325 13.901538
## 5 0.3619501 293.4362 0.13463211      LD S2An2LD 12.376185 12.227722
## 6 0.3549057 232.6536 0.14620175      LD S2An3LD 10.612028  5.449810
##         Y7        Y8        Y9       Y11     Ct Veg_pixels   Rveg
## 1 10.05684  7.695246  9.305107 10.945360 24.512        277 0.2216
## 2 10.64388 10.864941 13.347178 17.544068 39.336        568 0.4544
## 3 11.77028 12.158156 14.532373 14.902354 32.888        500 0.4000
## 4 15.86886 14.635193 17.084150 17.385223 42.503        504 0.4032
## 5 12.45627 12.243385 15.576473 19.018632 41.707        523 0.4184
## 6  5.50925  5.612370  6.121482  8.329726 18.811        307 0.2456
summary(site_mean_10)
##       Site            BLUE           GREEN           RED      
##  Min.   : 3.00   Min.   :737.4   Min.   :1105   Min.   :1117  
##  1st Qu.: 7.75   1st Qu.:787.0   1st Qu.:1165   1st Qu.:1295  
##  Median :13.00   Median :828.2   Median :1214   Median :1336  
##  Mean   :12.75   Mean   :822.5   Mean   :1211   Mean   :1328  
##  3rd Qu.:16.75   3rd Qu.:866.0   3rd Qu.:1256   3rd Qu.:1366  
##  Max.   :23.00   Max.   :884.6   Max.   :1300   Max.   :1483  
##                                                               
##       NIR            NDVI            mNDVI             RVI       
##  Min.   :1693   Min.   :0.1136   Min.   :0.2422   Min.   :1.260  
##  1st Qu.:1745   1st Qu.:0.1301   1st Qu.:0.2681   1st Qu.:1.302  
##  Median :1780   Median :0.1374   Median :0.2969   Median :1.325  
##  Mean   :1792   Mean   :0.1493   Mean   :0.3189   Mean   :1.361  
##  3rd Qu.:1860   3rd Qu.:0.1597   3rd Qu.:0.3504   3rd Qu.:1.386  
##  Max.   :1897   Max.   :0.2238   Max.   :0.4620   Max.   :1.599  
##                                                                  
##       REEI             EVI              SAVI            MSAVI       
##  Min.   :0.6392   Min.   :0.2399   Min.   :0.1704   Min.   :0.7024  
##  1st Qu.:0.7266   1st Qu.:0.2713   1st Qu.:0.1952   1st Qu.:0.7289  
##  Median :0.7602   Median :0.3144   Median :0.2061   Median :0.7397  
##  Mean   :0.7435   Mean   :0.3559   Mean   :0.2239   Mean   :0.7564  
##  3rd Qu.:0.7711   3rd Qu.:0.3944   3rd Qu.:0.2396   3rd Qu.:0.7733  
##  Max.   :0.7976   Max.   :0.6083   Max.   :0.3357   Max.   :0.8607  
##                                                                     
##      OSAVI            mARI1            mARI2           GCC        
##  Min.   :0.1136   Min.   :0.8623   Min.   :1472   Min.   :0.3512  
##  1st Qu.:0.1301   1st Qu.:0.8725   1st Qu.:1526   1st Qu.:0.3532  
##  Median :0.1374   Median :0.9001   Median :1626   Median :0.3585  
##  Mean   :0.1493   Mean   :0.9140   Mean   :1649   Mean   :0.3594  
##  3rd Qu.:0.1597   3rd Qu.:0.9379   3rd Qu.:1729   3rd Qu.:0.3623  
##  Max.   :0.2238   Max.   :1.0107   Max.   :1898   Max.   :0.3728  
##                                                                   
##        EG             FVC          Density      Name         Y5        
##  Min.   :192.1   Min.   :0.07502   HD:6    S1An1HD:1   Min.   : 6.144  
##  1st Qu.:223.1   1st Qu.:0.12059   LD:6    S1An1LD:1   1st Qu.: 6.567  
##  Median :263.0   Median :0.14070           S1An2HD:1   Median : 9.607  
##  Mean   :271.0   Mean   :0.17363           S1An2LD:1   Mean   : 9.760  
##  3rd Qu.:310.5   3rd Qu.:0.20244           S1An3HD:1   3rd Qu.:12.099  
##  Max.   :390.0   Max.   :0.37958           S1An3LD:1   Max.   :15.899  
##                                            (Other):6                   
##        Y6               Y7               Y8               Y9        
##  Min.   : 4.866   Min.   : 5.509   Min.   : 4.236   Min.   : 5.253  
##  1st Qu.: 5.931   1st Qu.: 6.522   1st Qu.: 5.602   1st Qu.: 7.717  
##  Median : 8.158   Median :10.350   Median : 7.992   Median :10.243  
##  Mean   : 8.480   Mean   : 9.598   Mean   : 8.527   Mean   :10.667  
##  3rd Qu.:10.842   3rd Qu.:11.552   3rd Qu.:11.188   3rd Qu.:13.643  
##  Max.   :13.902   Max.   :15.869   Max.   :14.635   Max.   :17.084  
##                                                                     
##       Y11               Ct          Veg_pixels         Rveg       
##  Min.   : 4.314   Min.   :14.77   Min.   : 87.0   Min.   :0.0696  
##  1st Qu.: 9.780   1st Qu.:19.19   1st Qu.:273.2   1st Qu.:0.2186  
##  Median :12.193   Median :24.15   Median :358.0   Median :0.2864  
##  Mean   :12.352   Mean   :27.05   Mean   :361.7   Mean   :0.2893  
##  3rd Qu.:15.523   3rd Qu.:34.50   3rd Qu.:501.0   3rd Qu.:0.4008  
##  Max.   :19.019   Max.   :42.50   Max.   :568.0   Max.   :0.4544  
## 

2.8.2 only veg pixels in each site

As only vegetation pixels were calculated. Therefor the mean VIs for each site was calculated by [sum(VI_veg)/1250]

# Get the sum vegetation's VIs for each site
.linshi<-melt(data_11_f[data_11_f$VEG==1,c(-1,-3)],id=c(1))
site_veg_sum_11<-dcast(.linshi,Site~variable,sum,na.rm=TRUE)

.linshi<-melt(data_10_f[data_10_f$VEG==1,c(-1,-3)],id=c(1))
site_veg_sum_10<-dcast(.linshi,Site~variable,sum,na.rm=TRUE)


# average sum of VIs by dividing the total number of pixels
site_veg_mean_11<-site_veg_sum_11
for(var in vars[-length(vars)]){site_veg_mean_11[[var]]<-site_veg_mean_11[[var]]/1250}

site_veg_mean_10<-site_veg_sum_10
for(var in vars[-length(vars)]){site_veg_mean_10[[var]]<-site_veg_mean_10[[var]]/1250}

# Merge with ABG and N_pixels which was used to calculate Rveg 
site_veg_mean_11<-merge(site_veg_mean_11,AGB,by="Site",all.y=T)
site_veg_mean_11<-merge(site_veg_mean_11,N_pixels,by="Site",all.x=T)
site_veg_mean_11$Rveg<-site_veg_mean_11$Veg_pixels/1250
head(site_veg_mean_11)
##   Site     BLUE    GREEN      RED       NIR       NDVI    mNDVI       RVI
## 1    3 263.1248 318.1232 347.8360  516.2600 0.04298983 137.2811 0.3305504
## 2    4 515.3232 629.2576 688.7472 1039.0440 0.09291328 288.3671 0.6947498
## 3    7 425.3872 533.8664 615.5136  952.5120 0.08678800 235.7533 0.6277143
## 4    8 442.9024 541.1168 604.0896  893.5704 0.07790600 237.9156 0.6013766
## 5   11 422.8400 520.3656 586.4856  914.1000 0.09199950 261.6842 0.6633542
## 6   12 245.6072 302.3592 335.9088  536.7072 0.05744080 163.8066 0.4021266
##       REEI      EVI       SAVI    MSAVI     OSAVI    mARI1     mARI2
## 1 187.8177 196.5256 0.06447637 227.6695  53.73506 253.2755  594275.6
## 2 377.4004 428.0197 0.13935080 474.5718 116.13650 520.8222 1197109.2
## 3 323.6249 306.4578 0.13016470 426.3510 108.48039 432.2488 1039634.2
## 4 342.5322 325.0294 0.11684298 413.4433  97.37823 452.3787 1008026.2
## 5 337.0097 364.4880 0.13797915 447.4629 114.99401 463.2074 1024550.6
## 6 192.4228 248.8934 0.08614819 268.0606  71.79753 275.9116  612350.7
##          GCC      EG        FVC Density    Name        Y5        Y6
## 1 0.07569574 25.2856 0.06443590      HD S2An2HD 11.078032  7.271884
## 2 0.15565754 54.4448 0.14390611      HD S2An3HD  8.601376  9.932828
## 3 0.13488912 26.8320 0.13904259      LD S2An1LD  6.580034 10.962102
## 4 0.13719928 35.2416 0.11646455      HD S2An1HD 15.899325 13.901538
## 5 0.14156769 31.4056 0.14845479      LD S2An2LD 12.376185 12.227722
## 6 0.08330674 23.2024 0.09564599      LD S2An3LD 10.612028  5.449810
##         Y7        Y8        Y9       Y11     Ct Veg_pixels   Rveg
## 1 10.05684  7.695246  9.305107 10.945360 24.512        277 0.2216
## 2 10.64388 10.864941 13.347178 17.544068 39.336        568 0.4544
## 3 11.77028 12.158156 14.532373 14.902354 32.888        500 0.4000
## 4 15.86886 14.635193 17.084150 17.385223 42.503        504 0.4032
## 5 12.45627 12.243385 15.576473 19.018632 41.707        523 0.4184
## 6  5.50925  5.612370  6.121482  8.329726 18.811        307 0.2456
summary(site_veg_mean_11)
##       Site            BLUE           GREEN            RED       
##  Min.   : 3.00   Min.   : 84.1   Min.   :103.0   Min.   :111.2  
##  1st Qu.: 7.75   1st Qu.:243.3   1st Qu.:299.5   1st Qu.:330.6  
##  Median :13.00   Median :358.1   Median :429.5   Median :467.9  
##  Mean   :12.75   Mean   :325.0   Mean   :396.6   Mean   :439.2  
##  3rd Qu.:16.75   3rd Qu.:423.5   3rd Qu.:523.7   3rd Qu.:590.9  
##  Max.   :23.00   Max.   :515.3   Max.   :629.3   Max.   :688.7  
##                                                                 
##       NIR              NDVI             mNDVI             RVI        
##  Min.   : 166.3   Min.   :0.01377   Min.   : 43.29   Min.   :0.1050  
##  1st Qu.: 505.4   1st Qu.:0.04282   1st Qu.:136.19   1st Qu.:0.3275  
##  Median : 687.8   Median :0.05640   Median :180.49   Median :0.4241  
##  Mean   : 664.3   Mean   :0.05944   Mean   :180.52   Mean   :0.4434  
##  3rd Qu.: 898.7   3rd Qu.:0.08013   3rd Qu.:236.29   3rd Qu.:0.6080  
##  Max.   :1039.0   Max.   :0.09291   Max.   :288.37   Max.   :0.6947  
##                                                                      
##       REEI             EVI              SAVI             MSAVI       
##  Min.   : 58.65   Min.   : 62.09   Min.   :0.02065   Min.   : 71.85  
##  1st Qu.:184.60   1st Qu.:197.15   1st Qu.:0.06422   1st Qu.:225.26  
##  Median :244.09   Median :265.14   Median :0.08459   Median :292.90  
##  Mean   :239.84   Mean   :258.10   Mean   :0.08914   Mean   :302.64  
##  3rd Qu.:326.97   3rd Qu.:322.67   3rd Qu.:0.12017   3rd Qu.:416.67  
##  Max.   :377.40   Max.   :428.02   Max.   :0.13935   Max.   :474.57  
##                                                                      
##      OSAVI            mARI1            mARI2              GCC         
##  Min.   : 17.21   Min.   : 80.81   Min.   : 194124   Min.   :0.02402  
##  1st Qu.: 53.52   1st Qu.:250.72   1st Qu.: 583343   1st Qu.:0.07485  
##  Median : 70.50   Median :329.18   Median : 792998   Median :0.09784  
##  Mean   : 74.29   Mean   :326.76   Mean   : 755552   Mean   :0.09854  
##  3rd Qu.:100.15   3rd Qu.:437.28   3rd Qu.:1012157   3rd Qu.:0.13547  
##  Max.   :116.14   Max.   :520.82   Max.   :1197109   Max.   :0.15566  
##                                                                       
##        EG             FVC          Density      Name         Y5        
##  Min.   :10.63   Min.   :0.02090   HD:6    S1An1HD:1   Min.   : 6.144  
##  1st Qu.:24.76   1st Qu.:0.06487   LD:6    S1An1LD:1   1st Qu.: 6.567  
##  Median :30.10   Median :0.08944           S1An2HD:1   Median : 9.607  
##  Mean   :28.90   Mean   :0.09231           S1An2LD:1   Mean   : 9.760  
##  3rd Qu.:32.67   3rd Qu.:0.12211           S1An3HD:1   3rd Qu.:12.099  
##  Max.   :54.44   Max.   :0.14845           S1An3LD:1   Max.   :15.899  
##                                            (Other):6                   
##        Y6               Y7               Y8               Y9        
##  Min.   : 4.866   Min.   : 5.509   Min.   : 4.236   Min.   : 5.253  
##  1st Qu.: 5.931   1st Qu.: 6.522   1st Qu.: 5.602   1st Qu.: 7.717  
##  Median : 8.158   Median :10.350   Median : 7.992   Median :10.243  
##  Mean   : 8.480   Mean   : 9.598   Mean   : 8.527   Mean   :10.667  
##  3rd Qu.:10.842   3rd Qu.:11.552   3rd Qu.:11.188   3rd Qu.:13.643  
##  Max.   :13.902   Max.   :15.869   Max.   :14.635   Max.   :17.084  
##                                                                     
##       Y11               Ct          Veg_pixels         Rveg       
##  Min.   : 4.314   Min.   :14.77   Min.   : 87.0   Min.   :0.0696  
##  1st Qu.: 9.780   1st Qu.:19.19   1st Qu.:273.2   1st Qu.:0.2186  
##  Median :12.193   Median :24.15   Median :358.0   Median :0.2864  
##  Mean   :12.352   Mean   :27.05   Mean   :361.7   Mean   :0.2893  
##  3rd Qu.:15.523   3rd Qu.:34.50   3rd Qu.:501.0   3rd Qu.:0.4008  
##  Max.   :19.019   Max.   :42.50   Max.   :568.0   Max.   :0.4544  
## 
site_veg_mean_10<-merge(site_veg_mean_10,AGB,by="Site",all.y=T)
site_veg_mean_10<-merge(site_veg_mean_10,N_pixels,by="Site",all.x=T)
site_veg_mean_10$Rveg<-site_veg_mean_10$Veg_pixels/1250
head(site_veg_mean_10)
##   Site     BLUE    GREEN      RED      NIR       NDVI     mNDVI       RVI
## 1    3 182.4624 272.4456 290.9480 384.4976 0.03055138  84.26654 0.2929318
## 2    4 361.6720 535.5872 557.7688 771.6264 0.07299333 202.94313 0.6299595
## 3    7 328.2176 488.9560 486.9712 715.7512 0.07541739 208.70005 0.5883808
## 4    8 320.6152 477.9224 516.8288 694.7440 0.05937380 159.87709 0.5435623
## 5   11 331.5056 497.6168 506.3976 707.2520 0.06853058 189.26575 0.5858051
## 6   12 184.8048 277.0344 282.0744 409.6448 0.04480389 121.20094 0.3578630
##       REEI       EVI       SAVI    MSAVI    OSAVI    mARI1    mARI2
## 1 210.1170  89.35629 0.04581953 205.3685 38.18721 259.4321 451651.9
## 2 411.5221 229.44915 0.10947100 440.4444 91.23660 545.9118 930665.7
## 3 342.3488 252.14325 0.11310699 407.6209 94.26664 501.5485 902925.8
## 4 375.1587 171.10828 0.08904571 380.8135 74.21325 466.9116 805731.1
## 5 377.2840 217.39316 0.10277793 407.1852 85.65844 513.3204 875649.8
## 6 213.3675 146.09643 0.06719360 247.1131 56.00159 300.7750 508954.1
##          GCC       EG        FVC Density    Name        Y5        Y6
## 1 0.08078233  71.4808 0.03146407      HD S2An2HD 11.078032  7.271884
## 2 0.16683868 151.7336 0.09311751      HD S2An3HD  8.601376  9.932828
## 3 0.14963963 162.7232 0.11282492      LD S2An1LD  6.580034 10.962102
## 4 0.14623447 118.4008 0.06771303      HD S2An1HD 15.899325 13.901538
## 5 0.15545777 157.3304 0.08938938      LD S2An2LD 12.376185 12.227722
## 6 0.09095828  87.1896 0.06512168      LD S2An3LD 10.612028  5.449810
##         Y7        Y8        Y9       Y11     Ct Veg_pixels   Rveg
## 1 10.05684  7.695246  9.305107 10.945360 24.512        277 0.2216
## 2 10.64388 10.864941 13.347178 17.544068 39.336        568 0.4544
## 3 11.77028 12.158156 14.532373 14.902354 32.888        500 0.4000
## 4 15.86886 14.635193 17.084150 17.385223 42.503        504 0.4032
## 5 12.45627 12.243385 15.576473 19.018632 41.707        523 0.4184
## 6  5.50925  5.612370  6.121482  8.329726 18.811        307 0.2456
summary(site_veg_mean_10)
##       Site            BLUE            GREEN             RED        
##  Min.   : 3.00   Min.   : 59.81   Min.   : 90.28   Min.   : 89.02  
##  1st Qu.: 7.75   1st Qu.:180.01   1st Qu.:269.48   1st Qu.:279.21  
##  Median :13.00   Median :226.72   Median :341.84   Median :313.94  
##  Mean   :12.75   Mean   :230.15   Mean   :343.93   Mean   :347.43  
##  3rd Qu.:16.75   3rd Qu.:322.52   3rd Qu.:480.68   3rd Qu.:491.83  
##  Max.   :23.00   Max.   :361.67   Max.   :535.59   Max.   :557.77  
##                                                                    
##       NIR             NDVI             mNDVI             RVI        
##  Min.   :128.7   Min.   :0.01267   Min.   : 35.81   Min.   :0.1011  
##  1st Qu.:383.6   1st Qu.:0.03449   1st Qu.: 93.34   1st Qu.:0.2969  
##  Median :510.6   Median :0.05810   Median :160.08   Median :0.4477  
##  Mean   :505.4   Mean   :0.05355   Mean   :146.20   Mean   :0.4252  
##  3rd Qu.:697.9   3rd Qu.:0.06965   3rd Qu.:192.97   3rd Qu.:0.5864  
##  Max.   :771.6   Max.   :0.09520   Max.   :242.24   Max.   :0.6300  
##                                                                     
##       REEI             EVI             SAVI             MSAVI       
##  Min.   : 60.43   Min.   : 44.7   Min.   :0.01900   Min.   : 70.06  
##  1st Qu.:204.21   1st Qu.:107.6   1st Qu.:0.05173   1st Qu.:206.21  
##  Median :230.45   Median :187.3   Median :0.08714   Median :305.25  
##  Mean   :250.27   Mean   :181.7   Mean   :0.08030   Mean   :292.21  
##  3rd Qu.:350.55   3rd Qu.:235.1   3rd Qu.:0.10445   3rd Qu.:395.98  
##  Max.   :411.52   Max.   :367.4   Max.   :0.14277   Max.   :440.44  
##                                                                     
##      OSAVI            mARI1           mARI2             GCC         
##  Min.   : 15.83   Min.   : 88.6   Min.   :164714   Min.   :0.02622  
##  1st Qu.: 43.12   1st Qu.:258.1   1st Qu.:460228   1st Qu.:0.07996  
##  Median : 72.62   Median :375.1   Median :675425   Median :0.10847  
##  Mean   : 66.93   Mean   :359.5   Mean   :633117   Mean   :0.10779  
##  3rd Qu.: 87.05   3rd Qu.:475.6   3rd Qu.:839300   3rd Qu.:0.14709  
##  Max.   :118.99   Max.   :545.9   Max.   :930666   Max.   :0.16684  
##                                                                     
##        EG              FVC          Density      Name         Y5        
##  Min.   : 31.74   Min.   :0.01837   HD:6    S1An1HD:1   Min.   : 6.144  
##  1st Qu.: 76.27   1st Qu.:0.04451   LD:6    S1An1LD:1   1st Qu.: 6.567  
##  Median :121.59   Median :0.07845           S1An2HD:1   Median : 9.607  
##  Mean   :110.28   Mean   :0.07883           S1An2LD:1   Mean   : 9.760  
##  3rd Qu.:153.13   3rd Qu.:0.09804           S1An3HD:1   3rd Qu.:12.099  
##  Max.   :162.72   Max.   :0.18319           S1An3LD:1   Max.   :15.899  
##                                             (Other):6                   
##        Y6               Y7               Y8               Y9        
##  Min.   : 4.866   Min.   : 5.509   Min.   : 4.236   Min.   : 5.253  
##  1st Qu.: 5.931   1st Qu.: 6.522   1st Qu.: 5.602   1st Qu.: 7.717  
##  Median : 8.158   Median :10.350   Median : 7.992   Median :10.243  
##  Mean   : 8.480   Mean   : 9.598   Mean   : 8.527   Mean   :10.667  
##  3rd Qu.:10.842   3rd Qu.:11.552   3rd Qu.:11.188   3rd Qu.:13.643  
##  Max.   :13.902   Max.   :15.869   Max.   :14.635   Max.   :17.084  
##                                                                     
##       Y11               Ct          Veg_pixels         Rveg       
##  Min.   : 4.314   Min.   :14.77   Min.   : 87.0   Min.   :0.0696  
##  1st Qu.: 9.780   1st Qu.:19.19   1st Qu.:273.2   1st Qu.:0.2186  
##  Median :12.193   Median :24.15   Median :358.0   Median :0.2864  
##  Mean   :12.352   Mean   :27.05   Mean   :361.7   Mean   :0.2893  
##  3rd Qu.:15.523   3rd Qu.:34.50   3rd Qu.:501.0   3rd Qu.:0.4008  
##  Max.   :19.019   Max.   :42.50   Max.   :568.0   Max.   :0.4544  
## 

2.9 Regression relationship between AGB and VIs

2.9.1 Spearm test for each variables with Carbon

# Build a function for calculate "spearman rho"
f_spear<-function(data,var){
    
  a<-pspearman::spearman.test(data[[var]],data[["Ct"]])
  return(c(var,a$estimate,a$p.value))
    
} 

# the whole site
Rho_11<-sapply(vars,f_spear,data=site_mean_11)
Rho_11<-data.frame(t(Rho_11))
for(i in c(2:3)){Rho_11[[i]]<-as.numeric(as.character(Rho_11[[i]]))}
names(Rho_11)<-c("VIs","Rho","P")
print(Rho_11,digits=3)
##         VIs    Rho        P
## BLUE   BLUE -0.706 0.012923
## GREEN GREEN -0.580 0.052076
## RED     RED -0.685 0.017015
## NIR     NIR -0.301 0.342415
## NDVI   NDVI  0.881 0.000335
## RVI     RVI  0.881 0.000335
## SAVI   SAVI  0.881 0.000335
## GCC     GCC  0.420 0.176733
## EG       EG  0.636 0.029942
## FVC     FVC  0.881 0.000335
## Rveg   Rveg  0.909 0.000115
Rho_10<-sapply(vars,f_spear,data=site_mean_10)
Rho_10<-data.frame(t(Rho_10))
for(i in c(2:3)){Rho_10[[i]]<-as.numeric(as.character(Rho_10[[i]]))}
names(Rho_10)<-c("VIs","Rho","P")
print(Rho_10,digits=3)
##         VIs     Rho        P
## BLUE   BLUE -0.6014 0.042800
## GREEN GREEN -0.6713 0.020194
## RED     RED -0.6364 0.029942
## NIR     NIR -0.6923 0.015546
## NDVI   NDVI  0.1608 0.619183
## RVI     RVI  0.2308 0.470802
## SAVI   SAVI  0.1608 0.619183
## GCC     GCC  0.1399 0.667310
## EG       EG -0.0909 0.782983
## FVC     FVC  0.1608 0.619183
## Rveg   Rveg  0.9091 0.000115
# only vegetation
Rho_veg_11<-sapply(vars,f_spear,data=site_veg_mean_11)
Rho_veg_11<-data.frame(t(Rho_veg_11))
for(i in c(2:3)){Rho_veg_11[[i]]<-as.numeric(as.character(Rho_veg_11[[i]]))}
names(Rho_veg_11)<-c("VIs","Rho_Veg","P_veg")
print(Rho_veg_11,digits=3)
##         VIs Rho_Veg    P_veg
## BLUE   BLUE   0.937 2.79e-05
## GREEN GREEN   0.937 2.79e-05
## RED     RED   0.916 8.39e-05
## NIR     NIR   0.881 3.35e-04
## NDVI   NDVI   0.860 6.44e-04
## RVI     RVI   0.895 2.03e-04
## SAVI   SAVI   0.860 6.44e-04
## GCC     GCC   0.909 1.15e-04
## EG       EG   0.727 9.63e-03
## FVC     FVC   0.846 9.45e-04
## Rveg   Rveg   0.909 1.15e-04
Rho<-cbind(Rho_veg_11,Rho_11[-1])
print(Rho,digits=3)
##         VIs Rho_Veg    P_veg    Rho        P
## BLUE   BLUE   0.937 2.79e-05 -0.706 0.012923
## GREEN GREEN   0.937 2.79e-05 -0.580 0.052076
## RED     RED   0.916 8.39e-05 -0.685 0.017015
## NIR     NIR   0.881 3.35e-04 -0.301 0.342415
## NDVI   NDVI   0.860 6.44e-04  0.881 0.000335
## RVI     RVI   0.895 2.03e-04  0.881 0.000335
## SAVI   SAVI   0.860 6.44e-04  0.881 0.000335
## GCC     GCC   0.909 1.15e-04  0.420 0.176733
## EG       EG   0.727 9.63e-03  0.636 0.029942
## FVC     FVC   0.846 9.45e-04  0.881 0.000335
## Rveg   Rveg   0.909 1.15e-04  0.909 0.000115
Rho_veg_10<-sapply(vars,f_spear,data=site_veg_mean_10)
Rho_veg_10<-data.frame(t(Rho_veg_10))
for(i in c(2:3)){Rho_veg_10[[i]]<-as.numeric(as.character(Rho_veg_10[[i]]))}
names(Rho_veg_10)<-c("VIs","Rho_Veg","P_veg")
print(Rho_veg_10,digits=3)
##         VIs Rho_Veg    P_veg
## BLUE   BLUE   0.881 3.35e-04
## GREEN GREEN   0.881 3.35e-04
## RED     RED   0.937 2.79e-05
## NIR     NIR   0.881 3.35e-04
## NDVI   NDVI   0.727 9.63e-03
## RVI     RVI   0.797 2.91e-03
## SAVI   SAVI   0.727 9.63e-03
## GCC     GCC   0.888 2.61e-04
## EG       EG   0.699 1.42e-02
## FVC     FVC   0.580 5.21e-02
## Rveg   Rveg   0.909 1.15e-04
Rho<-cbind(Rho_veg_10,Rho_10[-1])
print(Rho,digits=3)
##         VIs Rho_Veg    P_veg     Rho        P
## BLUE   BLUE   0.881 3.35e-04 -0.6014 0.042800
## GREEN GREEN   0.881 3.35e-04 -0.6713 0.020194
## RED     RED   0.937 2.79e-05 -0.6364 0.029942
## NIR     NIR   0.881 3.35e-04 -0.6923 0.015546
## NDVI   NDVI   0.727 9.63e-03  0.1608 0.619183
## RVI     RVI   0.797 2.91e-03  0.2308 0.470802
## SAVI   SAVI   0.727 9.63e-03  0.1608 0.619183
## GCC     GCC   0.888 2.61e-04  0.1399 0.667310
## EG       EG   0.699 1.42e-02 -0.0909 0.782983
## FVC     FVC   0.580 5.21e-02  0.1608 0.619183
## Rveg   Rveg   0.909 1.15e-04  0.9091 0.000115
#---------------------

2.9.2 Linear regression model

# Build a function for calculate "coefficients for carbon and vis"
f_coef<-function(data,var){
    
all<-summary.lm(lm(data[["Ct"]] ~ data[[var]]))
all_rms<-rmse(data[["Ct"]],data[[var]])

HD<-summary.lm(lm(data[data$Density=="HD","Ct"] ~ data[data$Density=="HD",var]))
HD_rms<-rmse(data[data$Density=="HD","Ct"] , data[data$Density=="HD",i])

LD<-summary.lm(lm(data[data$Density=="LD","Ct"] ~ data[data$Density=="LD",var]))
LD_rms<-rmse(data[data$Density=="LD","Ct"] , data[data$Density=="LD",var])

return(c(var,all$r.squared,all$coefficients[1],all$coefficients[2],all$coefficients[8],all_rms,HD$r.squared,HD$coefficients[1],HD$coefficients[2],HD$coefficients[8],HD_rms,LD$r.squared,LD$coefficients[1],LD$coefficients[2],LD$coefficients[8],LD_rms))
} 

2.9.2.1 2011

# The whole site
Coef_11<-sapply(vars[-c(1:4)],f_coef,data=site_mean_11)
Coef_11<-data.frame(t(Coef_11))
for(i in c(2:16)){Coef_11[[i]]<-as.numeric(as.character(Coef_11[[i]]))}
names(Coef_11)<-c("VIs","r_all","inte_all","slope_all","P_all","Rmse_all","r_HD","inte_HD","slope_HD","P_HD","Rmse_HD","r_LD","inte_LD","slope_LD","P_LD","Rmse_LD")
print(Coef_11,digits=3)
##       VIs r_all inte_all slope_all    P_all Rmse_all   r_HD inte_HD
## NDVI NDVI 0.783   -45.52   532.080 1.32e-04     28.5 0.9361  -61.58
## RVI   RVI 0.754  -207.52   176.564 2.51e-04     27.3 0.9290 -273.74
## SAVI SAVI 0.783   -45.52   354.777 1.32e-04     28.4 0.9361  -61.59
## GCC   GCC 0.104  -559.11  1782.293 3.07e-01     28.3 0.0755 -565.17
## EG     EG 0.391    41.52     0.282 2.97e-02     80.1 0.4335   40.65
## FVC   FVC 0.783    -4.84   215.081 1.32e-04     28.5 0.9361  -10.60
## Rveg Rveg 0.827     5.44    74.707 4.14e-05     28.3 0.8315    7.22
##      slope_HD    P_HD Rmse_HD  r_LD inte_LD slope_LD   P_LD Rmse_LD
## NDVI   666.74 0.00157    1469 0.754  -37.99  463.375 0.0248    27.5
## RVI    228.47 0.00194    1469 0.740 -181.16  155.135 0.0279    26.4
## SAVI   444.58 0.00157    1469 0.754  -37.99  308.962 0.0248    27.5
## GCC   1797.73 0.59825    1469 0.182 -970.74 3040.603 0.3995    27.4
## EG       0.31 0.15507    1469 0.488   51.48    0.411 0.1226    88.2
## FVC    269.52 0.00157    1469 0.754   -2.56  187.309 0.0248    27.5
## Rveg    71.86 0.01131    1469 0.848    3.07   79.521 0.0092    27.4
# reshape coef_11
.all<-cbind(Coef_11[c(1:6)],type="ALL")
.hd<-cbind(Coef_11[c(1,7:11)],type="HD")
.ld<-cbind(Coef_11[c(1,12:16)],type="LD")
names(.all)<-names(.hd)<-names(.ld)<-c("VIs","R2","intercept","slope","P","Rmse","Type")
Coef_11_reshape<-rbind(.all,.hd,.ld)
Coef_11_reshape<-arrange(Coef_11_reshape,VIs,desc(Type))
print(Coef_11_reshape,digits=3)
##     VIs     R2 intercept    slope        P   Rmse Type
## 1    EG 0.4881     51.48    0.411 1.23e-01   88.2   LD
## 2    EG 0.4335     40.65    0.310 1.55e-01 1468.6   HD
## 3    EG 0.3909     41.52    0.282 2.97e-02   80.1  ALL
## 4   FVC 0.7544     -2.56  187.309 2.48e-02   27.5   LD
## 5   FVC 0.9361    -10.60  269.516 1.57e-03 1468.6   HD
## 6   FVC 0.7827     -4.84  215.081 1.32e-04   28.5  ALL
## 7   GCC 0.1816   -970.74 3040.603 4.00e-01   27.4   LD
## 8   GCC 0.0755   -565.17 1797.733 5.98e-01 1468.6   HD
## 9   GCC 0.1040   -559.11 1782.293 3.07e-01   28.3  ALL
## 10 NDVI 0.7544    -37.99  463.375 2.48e-02   27.5   LD
## 11 NDVI 0.9361    -61.58  666.744 1.57e-03 1468.6   HD
## 12 NDVI 0.7827    -45.52  532.080 1.32e-04   28.5  ALL
## 13 Rveg 0.8475      3.07   79.521 9.20e-03   27.4   LD
## 14 Rveg 0.8315      7.22   71.863 1.13e-02 1468.6   HD
## 15 Rveg 0.8269      5.44   74.707 4.14e-05   28.3  ALL
## 16  RVI 0.7403   -181.16  155.135 2.79e-02   26.4   LD
## 17  RVI 0.9290   -273.74  228.470 1.94e-03 1468.6   HD
## 18  RVI 0.7535   -207.52  176.564 2.51e-04   27.3  ALL
## 19 SAVI 0.7544    -37.99  308.962 2.48e-02   27.5   LD
## 20 SAVI 0.9361    -61.59  444.576 1.57e-03 1468.6   HD
## 21 SAVI 0.7827    -45.52  354.777 1.32e-04   28.4  ALL
# only with vegetation pixels
Coef_veg_11<-sapply(vars[-c(1:4)],f_coef,data=site_veg_mean_11)
Coef_veg_11<-data.frame(t(Coef_veg_11))
for(i in c(2:16)){Coef_veg_11[[i]]<-as.numeric(as.character(Coef_veg_11[[i]]))}
names(Coef_veg_11)<-c("VIs","r_all","inte_all","slope_all","P_all","Rmse_all","r_HD","inte_HD","slope_HD","P_HD","Rmse_HD","r_LD","inte_LD","slope_LD","P_LD","Rmse_LD")
print(Coef_veg_11,digits=3)
##       VIs r_all inte_all slope_all    P_all Rmse_all  r_HD inte_HD
## NDVI NDVI 0.782     7.09   335.866 1.35e-04    28.55 0.835    7.82
## RVI   RVI 0.811     6.09    47.278 6.46e-05    28.14 0.836    7.46
## SAVI SAVI 0.782     7.09   223.943 1.35e-04    28.51 0.835    7.82
## GCC   GCC 0.826     5.35   220.241 4.30e-05    28.50 0.830    7.21
## EG     EG 0.459    10.50     0.573 1.56e-02     8.51 0.605    9.32
## FVC   FVC 0.742     8.37   202.442 3.20e-04    28.51 0.833    8.28
## Rveg Rveg 0.827     5.44    74.707 4.14e-05    28.30 0.832    7.22
##      slope_HD   P_HD Rmse_HD  r_LD inte_LD slope_LD    P_LD Rmse_LD
## NDVI   356.51 0.0108    29.4 0.807    5.29  334.515 0.01494   27.60
## RVI     47.40 0.0107    29.4 0.831    4.09   48.547 0.01144   27.19
## SAVI   237.70 0.0108    29.4 0.807    5.29  223.041 0.01494   27.57
## GCC    210.40 0.0116    29.4 0.845    2.83  236.595 0.00948   27.57
## EG       0.58 0.0685    29.4 0.292    9.17    0.661 0.26867    7.71
## FVC    230.98 0.0111    29.4 0.781    6.52  197.612 0.01942   27.56
## Rveg    71.86 0.0113    29.4 0.848    3.07   79.521 0.00920   27.36
# reshape coef_11
.all<-cbind(Coef_veg_11[c(1:6)],type="ALL")
.hd<-cbind(Coef_veg_11[c(1,7:11)],type="HD")
.ld<-cbind(Coef_veg_11[c(1,12:16)],type="LD")
names(.all)<-names(.hd)<-names(.ld)<-c("VIs","R2","intercept","slope","P","Rmse","Type")
Coef_veg_11_reshape<-rbind(.all,.hd,.ld)
Coef_veg_11_reshape<-arrange(Coef_veg_11_reshape,VIs,desc(Type))
print(Coef_veg_11_reshape,digits=3)
##     VIs    R2 intercept   slope        P  Rmse Type
## 1    EG 0.292      9.17   0.661 2.69e-01  7.71   LD
## 2    EG 0.605      9.32   0.580 6.85e-02 29.41   HD
## 3    EG 0.459     10.50   0.573 1.56e-02  8.51  ALL
## 4   FVC 0.781      6.52 197.612 1.94e-02 27.56   LD
## 5   FVC 0.833      8.28 230.979 1.11e-02 29.41   HD
## 6   FVC 0.742      8.37 202.442 3.20e-04 28.51  ALL
## 7   GCC 0.845      2.83 236.595 9.48e-03 27.57   LD
## 8   GCC 0.830      7.21 210.402 1.16e-02 29.41   HD
## 9   GCC 0.826      5.35 220.241 4.30e-05 28.50  ALL
## 10 NDVI 0.807      5.29 334.515 1.49e-02 27.60   LD
## 11 NDVI 0.835      7.82 356.507 1.08e-02 29.41   HD
## 12 NDVI 0.782      7.09 335.866 1.35e-04 28.55  ALL
## 13 Rveg 0.848      3.07  79.521 9.20e-03 27.36   LD
## 14 Rveg 0.832      7.22  71.863 1.13e-02 29.41   HD
## 15 Rveg 0.827      5.44  74.707 4.14e-05 28.30  ALL
## 16  RVI 0.831      4.09  48.547 1.14e-02 27.19   LD
## 17  RVI 0.836      7.46  47.398 1.07e-02 29.41   HD
## 18  RVI 0.811      6.09  47.278 6.46e-05 28.14  ALL
## 19 SAVI 0.807      5.29 223.041 1.49e-02 27.57   LD
## 20 SAVI 0.835      7.82 237.704 1.08e-02 29.41   HD
## 21 SAVI 0.782      7.09 223.943 1.35e-04 28.51  ALL

2.9.2.2 2010

# The whole site
Coef_10<-sapply(vars[-c(1:4)],f_coef,data=site_mean_10)
Coef_10<-data.frame(t(Coef_10))
for(i in c(2:16)){Coef_10[[i]]<-as.numeric(as.character(Coef_10[[i]]))}
names(Coef_10)<-c("VIs","r_all","inte_all","slope_all","P_all","Rmse_all","r_HD","inte_HD","slope_HD","P_HD","Rmse_HD","r_LD","inte_LD","slope_LD","P_LD","Rmse_LD")
print(Coef_10,digits=3)
##       VIs    r_all inte_all slope_all    P_all Rmse_all   r_HD inte_HD
## NDVI NDVI 1.11e-04    27.51   -3.0771 9.74e-01     28.5 0.0722   42.25
## RVI   RVI 4.47e-04    29.81   -2.0279 9.48e-01     27.3 0.0736   72.65
## SAVI SAVI 1.11e-04    27.51   -2.0552 9.74e-01     28.4 0.0722   42.25
## GCC   GCC 6.93e-06    25.78    3.5540 9.94e-01     28.3 0.3133  337.53
## EG     EG 1.13e-02    31.37   -0.0159 7.42e-01    252.2 0.4149   53.05
## FVC   FVC 1.11e-04    27.25   -1.1132 9.74e-01     28.4 0.0722   33.88
## Rveg Rveg 8.27e-01     5.44   74.7069 4.14e-05     28.3 0.8315    7.22
##       slope_HD   P_HD Rmse_HD   r_LD  inte_LD slope_LD   P_LD Rmse_LD
## NDVI  -96.6739 0.6067    29.2 0.0454   18.522  51.7728 0.6854    27.5
## RVI   -33.0257 0.6030    29.2 0.0360    5.957  14.8826 0.7187    26.4
## SAVI  -64.4676 0.6066    29.2 0.0454   18.521  34.5218 0.6854    27.5
## GCC  -862.2440 0.2481    29.2 0.3096 -209.638 656.0979 0.2515    27.3
## EG     -0.0927 0.1675    29.2 0.4037   -0.604   0.0995 0.1752   249.0
## FVC   -34.9743 0.6067    29.2 0.0454   23.000  18.7301 0.6854    27.5
## Rveg   71.8626 0.0113    29.2 0.8475    3.069  79.5214 0.0092    27.4
# reshape coef_10
.all<-cbind(Coef_10[c(1:6)],type="ALL")
.hd<-cbind(Coef_10[c(1,7:11)],type="HD")
.ld<-cbind(Coef_10[c(1,12:16)],type="LD")
names(.all)<-names(.hd)<-names(.ld)<-c("VIs","R2","intercept","slope","P","Rmse","Type")
Coef_10_reshape<-rbind(.all,.hd,.ld)
Coef_10_reshape<-arrange(Coef_10_reshape,VIs,desc(Type))
print(Coef_10_reshape,digits=3)
##     VIs       R2 intercept     slope        P  Rmse Type
## 1    EG 4.04e-01    -0.604    0.0995 1.75e-01 249.0   LD
## 2    EG 4.15e-01    53.054   -0.0927 1.67e-01  29.2   HD
## 3    EG 1.13e-02    31.366   -0.0159 7.42e-01 252.2  ALL
## 4   FVC 4.54e-02    23.000   18.7301 6.85e-01  27.5   LD
## 5   FVC 7.22e-02    33.883  -34.9743 6.07e-01  29.2   HD
## 6   FVC 1.11e-04    27.247   -1.1132 9.74e-01  28.4  ALL
## 7   GCC 3.10e-01  -209.638  656.0979 2.52e-01  27.3   LD
## 8   GCC 3.13e-01   337.531 -862.2440 2.48e-01  29.2   HD
## 9   GCC 6.93e-06    25.777    3.5540 9.94e-01  28.3  ALL
## 10 NDVI 4.54e-02    18.522   51.7728 6.85e-01  27.5   LD
## 11 NDVI 7.22e-02    42.245  -96.6739 6.07e-01  29.2   HD
## 12 NDVI 1.11e-04    27.513   -3.0771 9.74e-01  28.5  ALL
## 13 Rveg 8.48e-01     3.069   79.5214 9.20e-03  27.4   LD
## 14 Rveg 8.32e-01     7.220   71.8626 1.13e-02  29.2   HD
## 15 Rveg 8.27e-01     5.439   74.7069 4.14e-05  28.3  ALL
## 16  RVI 3.60e-02     5.957   14.8826 7.19e-01  26.4   LD
## 17  RVI 7.36e-02    72.647  -33.0257 6.03e-01  29.2   HD
## 18  RVI 4.47e-04    29.813   -2.0279 9.48e-01  27.3  ALL
## 19 SAVI 4.54e-02    18.521   34.5218 6.85e-01  27.5   LD
## 20 SAVI 7.22e-02    42.247  -64.4676 6.07e-01  29.2   HD
## 21 SAVI 1.11e-04    27.514   -2.0552 9.74e-01  28.4  ALL
# only with vegetation pixels
Coef_veg_10<-sapply(vars[-c(1:4)],f_coef,data=site_veg_mean_10)
Coef_veg_10<-data.frame(t(Coef_veg_10))
for(i in c(2:16)){Coef_veg_10[[i]]<-as.numeric(as.character(Coef_veg_10[[i]]))}
names(Coef_veg_10)<-c("VIs","r_all","inte_all","slope_all","P_all","Rmse_all","r_HD","inte_HD","slope_HD","P_HD","Rmse_HD","r_LD","inte_LD","slope_LD","P_LD","Rmse_LD")
print(Coef_veg_10,digits=3)
##       VIs r_all inte_all slope_all    P_all Rmse_all  r_HD inte_HD
## NDVI NDVI 0.390    13.73   248.806 2.99e-02     28.6 0.436   12.65
## RVI   RVI 0.663     7.88    45.099 1.27e-03     28.2 0.700    8.31
## SAVI SAVI 0.390    13.73   165.903 2.99e-02     28.5 0.436   12.65
## GCC   GCC 0.798     5.69   198.166 8.99e-05     28.5 0.800    7.29
## EG     EG 0.534     9.51     0.159 6.93e-03     90.9 0.446   10.90
## FVC   FVC 0.127    21.13    75.199 2.56e-01     28.5 0.115   21.16
## Rveg Rveg 0.827     5.44    74.707 4.14e-05     28.3 0.832    7.22
##      slope_HD   P_HD Rmse_HD  r_LD inte_LD slope_LD   P_LD Rmse_LD
## NDVI  304.249 0.1532    29.4 0.419   13.25  227.677 0.1647    27.6
## RVI    47.568 0.0377    29.4 0.668    6.95   43.909 0.0471    27.2
## SAVI  202.871 0.1532    29.4 0.419   13.25  151.815 0.1647    27.6
## GCC   193.603 0.0161    29.4 0.828    3.61  207.064 0.0119    27.6
## EG      0.162 0.1474    29.4 0.719    6.91    0.167 0.0329    97.2
## FVC    96.297 0.5100    29.4 0.194   19.52   76.425 0.3822    27.6
## Rveg   71.863 0.0113    29.4 0.848    3.07   79.521 0.0092    27.4
# reshape coef_10
.all<-cbind(Coef_veg_10[c(1:6)],type="ALL")
.hd<-cbind(Coef_veg_10[c(1,7:11)],type="HD")
.ld<-cbind(Coef_veg_10[c(1,12:16)],type="LD")
names(.all)<-names(.hd)<-names(.ld)<-c("VIs","R2","intercept","slope","P","Rmse","Type")
Coef_veg_10_reshape<-rbind(.all,.hd,.ld)
Coef_veg_10_reshape<-arrange(Coef_veg_10_reshape,VIs,desc(Type))
print(Coef_veg_10_reshape,digits=3)
##     VIs    R2 intercept   slope        P Rmse Type
## 1    EG 0.719      6.91   0.167 3.29e-02 97.2   LD
## 2    EG 0.446     10.90   0.162 1.47e-01 29.4   HD
## 3    EG 0.534      9.51   0.159 6.93e-03 90.9  ALL
## 4   FVC 0.194     19.52  76.425 3.82e-01 27.6   LD
## 5   FVC 0.115     21.16  96.297 5.10e-01 29.4   HD
## 6   FVC 0.127     21.13  75.199 2.56e-01 28.5  ALL
## 7   GCC 0.828      3.61 207.064 1.19e-02 27.6   LD
## 8   GCC 0.800      7.29 193.603 1.61e-02 29.4   HD
## 9   GCC 0.798      5.69 198.166 8.99e-05 28.5  ALL
## 10 NDVI 0.419     13.25 227.677 1.65e-01 27.6   LD
## 11 NDVI 0.436     12.65 304.249 1.53e-01 29.4   HD
## 12 NDVI 0.390     13.73 248.806 2.99e-02 28.6  ALL
## 13 Rveg 0.848      3.07  79.521 9.20e-03 27.4   LD
## 14 Rveg 0.832      7.22  71.863 1.13e-02 29.4   HD
## 15 Rveg 0.827      5.44  74.707 4.14e-05 28.3  ALL
## 16  RVI 0.668      6.95  43.909 4.71e-02 27.2   LD
## 17  RVI 0.700      8.31  47.568 3.77e-02 29.4   HD
## 18  RVI 0.663      7.88  45.099 1.27e-03 28.2  ALL
## 19 SAVI 0.419     13.25 151.815 1.65e-01 27.6   LD
## 20 SAVI 0.436     12.65 202.871 1.53e-01 29.4   HD
## 21 SAVI 0.390     13.73 165.903 2.99e-02 28.5  ALL

2.9.3 plot Linear regression model

.df <- data.frame(x = site_mean_11\(Veg_pixels/1250, y = site_mean_11\)Ct, z = site_mean_11$Density)

# Build a function for ploting relationship between carbon and vis
f_plot<-function(data,index,name,outname){
  
.df <- data.frame(x = data[[index]], y = data$Ct, z = data$Density)

.plot <- ggplot(data = .df, aes(x = x, y = y, col = z, shape = z)) + geom_point(aes(cex = 3)) + stat_smooth(aes(fill = z), method = 
  "lm", se = FALSE) + scale_colour_brewer(palette = "Set1") + xlab(name) + 
  xlim(min(.df$x),max(.df$x))+ylim(0, 45)+
  ylab("Carbon storage (Ct) (t/ha)") + labs(colour = "Density", shape = "Density", fill = "Density") + theme_bw(base_size = 14, base_family = "Times") +
  theme(legend.position = "right")+
  geom_abline(size=1,intercept = lm(.df$y~.df$x)$coefficients[1], slope = lm(.df$y~.df$x)$coefficients[2])

print(.plot)
ggsave(paste("results/",outname,sep=""),.plot)
rm(.df, .plot)
}

2.9.3.1 2011 in Summer

# Whole site
f_plot(site_mean_11,"RVI","RVI","RVI_R.pdf")

f_plot(site_mean_11,"Rveg","Rveg","Rveg_R.pdf")

f_plot(site_mean_11,"FVC","FVC","FVC_R.pdf")

f_plot(site_mean_11,"GCC","GCC","GCC_R.pdf")

f_plot(site_mean_11,"EG","EG","EG_R.pdf")

# only veg pixels in each site
f_plot(site_veg_mean_11,"RVI","RVI","RVI_VEG_R.pdf")

f_plot(site_veg_mean_11,"GCC","GCC","GCC_VEG_R.pdf")

f_plot(site_veg_mean_11,"EG","EG","EG_R.pdf")

2.9.3.2 2010 in Winter

# Whole site
f_plot(site_mean_10,"RVI","RVI","RVI_R.pdf")

f_plot(site_mean_10,"Rveg","Rveg","Rveg_R.pdf")

f_plot(site_mean_10,"FVC","FVC","FVC_R.pdf")

f_plot(site_mean_10,"GCC","GCC","GCC_R.pdf")

f_plot(site_mean_10,"EG","EG","EG_R.pdf")

# only veg pixels in each site
f_plot(site_veg_mean_10,"RVI","RVI","RVI_VEG_R.pdf")

f_plot(site_veg_mean_10,"GCC","GCC","GCC_VEG_R.pdf")

f_plot(site_veg_mean_10,"EG","EG","EG_R.pdf")

2.10 Slope_TEST for relationship between different density

  library(smatr)
  a<-site_mean_11
  a$Site[a$Density=="HD"]<-1
  a$Site[a$Density=="LD"]<-2
  with(a, slope.com(RVI,Ct,Site, method = 'SMA', alpha = 0.05)) 
## $LR
## [1] 0.7459778
## 
## $p
## [1] 0.3877527
## 
## $b
## [1] 0.004453623
## 
## $ci
## [1] 0.003321831 0.006340080
## 
## $varb
## [1] 2.923973e-07
## 
## $lambda
## [1] 1.983476e-05
## 
## $bs
##                        1           2
## slope        0.004218641 0.005546200
## lower.CI.lim 0.002937351 0.002870149
## upper.CI.lim 0.006058836 0.010717329
## 
## $df
## [1] 1
  with(a, slope.com(Rveg,Ct,Site, method = 'SMA', alpha = 0.05)) 
## $LR
## [1] 0.09119924
## 
## $p
## [1] 0.7626581
## 
## $b
## [1] 0.01209224
## 
## $ci
## [1] 0.008628563 0.017014310
## 
## $varb
## [1] 2.957932e-06
## 
## $lambda
## [1] 0.0001462223
## 
## $bs
##                        1           2
## slope        0.012689036 0.011577007
## lower.CI.lim 0.007373859 0.006893115
## upper.CI.lim 0.021835466 0.019443615
## 
## $df
## [1] 1
  a<-site_mean_10
  a$Site[a$Density=="HD"]<-1
  a$Site[a$Density=="LD"]<-2
  with(a, slope.com(RVI,Ct,Site, method = 'SMA', alpha = 0.05)) 
## $LR
## [1] 0.3546547
## 
## $p
## [1] 0.55149
## 
## $b
## [1] -0.01019141
## 
## $ci
## [1] -0.022145458 -0.004713874
## 
## $varb
## [1] 1.229988e-05
## 
## $lambda
## [1] 0.0001038649
## 
## $bs
##                         1           2
## slope        -0.008215308 0.012752331
## lower.CI.lim -0.002733814 0.004176329
## upper.CI.lim -0.024687593 0.038938974
## 
## $df
## [1] 1
  with(a, slope.com(Rveg,Ct,Site, method = 'SMA', alpha = 0.05)) 
## $LR
## [1] 0.09119924
## 
## $p
## [1] 0.7626581
## 
## $b
## [1] 0.01209224
## 
## $ci
## [1] 0.008628563 0.017014310
## 
## $varb
## [1] 2.957932e-06
## 
## $lambda
## [1] 0.0001462223
## 
## $bs
##                        1           2
## slope        0.012689036 0.011577007
## lower.CI.lim 0.007373859 0.006893115
## upper.CI.lim 0.021835466 0.019443615
## 
## $df
## [1] 1
#-----------

2.11 compare between different time images

2.11.1 T_TEST between saltbush and pasture

# difference between saltbush and pastureof for each VI 
  
f_diff<-function(data,var){
  
  #require(Hmisc)
  #print(describe(data$VEG))

  a<-t.test(data[data$VEG==0,var],data[data$VEG==1,var])
  
  return(c(var,a$p.value))
  
}
  
  diff_11<-sapply(vars[-length(vars)],f_diff,data=data_11_f)
  diff_11<-data.frame(t(diff_11))
  diff_11[[2]]<-as.numeric(as.character(diff_11[[2]]))
  names(diff_11)<-c("VIs","P")
  print(diff_11,digits=4)
##         VIs          P
## BLUE   BLUE  0.000e+00
## GREEN GREEN  0.000e+00
## RED     RED  0.000e+00
## NIR     NIR 7.452e-143
## NDVI   NDVI  0.000e+00
## RVI     RVI  0.000e+00
## SAVI   SAVI  0.000e+00
## GCC     GCC  0.000e+00
## EG       EG  0.000e+00
## FVC     FVC  0.000e+00
# difference of VIS between 2011 and 2010
  
f_diff_sea<-function(data1,data2,var){
  
  #require(Hmisc)
  #print(describe(data1$VEG))
  #print(describe(data2$VEG))
  a0<-t.test(data1[data1$VEG==0,var],data2[data2$VEG==0,var])
  a1<-t.test(data1[data1$VEG==1,var],data2[data2$VEG==1,var])

  return(c(var,a0$p.value,mean(data1[data1$VEG==0,var]),mean(data2[data2$VEG==0,var]),a1$p.value,mean(data1[data1$VEG==1,var]),mean(data2[data2$VEG==1,var])))
  
}  

  diff_sea<-sapply(vars[-length(vars)],f_diff_sea,data1=data_10_f,data2=data_11_f)
  diff_sea<-data.frame(t(diff_sea))
  for(i in c(2:7)){diff_sea[[i]]<-as.numeric(as.character(diff_sea[[i]]))}
  names(diff_sea)<-c("VIs","P_soil","mean_10_soil","mean_11_soil","P_saltbush","mean_10_veg","mean_11_veg")
  print(diff_sea,digits=4) 
##         VIs     P_soil mean_10_soil mean_11_soil P_saltbush mean_10_veg
## BLUE   BLUE  0.000e+00     884.7444   1331.60403  0.000e+00    725.1085
## GREEN GREEN  0.000e+00    1263.7646   1531.27492 4.041e-270   1077.3630
## RED     RED  0.000e+00    1438.1830   1864.73045  0.000e+00   1110.4405
## NIR     NIR  0.000e+00    1866.9595   2327.47008  0.000e+00   1912.4932
## NDVI   NDVI  0.000e+00       0.1306      0.10995  5.128e-73      0.2598
## RVI     RVI  0.000e+00       1.3057      1.24990  2.725e-56      1.7940
## SAVI   SAVI  0.000e+00       0.1959      0.16491  4.573e-73      0.3896
## GCC     GCC  0.000e+00       0.3509      0.32245  0.000e+00      0.3685
## EG       EG  0.000e+00     204.6019   -133.78463  0.000e+00    319.1769
## FVC     FVC 6.058e-248       0.1219      0.08286  2.559e-23      0.4790
##       mean_11_veg
## BLUE     977.5688
## GREEN   1215.8140
## RED     1387.8080
## NIR     2506.9705
## NDVI       0.2844
## RVI        1.9035
## SAVI       0.4266
## GCC        0.3382
## EG        66.2512
## FVC        0.5145
  P_veg<-summary(as.factor(data_11_f$VEG))/length(data_11_f$VEG)
  names(P_veg)<-c("Nonveg","Veg")
  print(P_veg)
##    Nonveg       Veg 
## 0.4647747 0.5352253
#----------------------

2.11.2 Anova two-way test between saltbush and pasture

  Anova_data<-rbind(cbind(data_11_f,YEAR=2011),cbind(data_10_f,YEAR=2010))
  Anova_data$YEAR<-as.factor(Anova_data$YEAR)
  Anova_data$VEG<-as.factor(Anova_data$VEG)
  Anova_data$group<-NA
  
  # define different groups
  Anova_data$group[Anova_data$YEAR==2010 & Anova_data$VEG==0]<-"A"
  Anova_data$group[Anova_data$YEAR==2010 & Anova_data$VEG==1]<-"B"
  Anova_data$group[Anova_data$YEAR==2011 & Anova_data$VEG==0]<-"C"
  Anova_data$group[Anova_data$YEAR==2011 & Anova_data$VEG==1]<-"D"
  Anova_data$group<-as.factor(Anova_data$group)
  
  summary(Anova_data)
##        ID              Site      VEG            BLUE            GREEN     
##  Min.   : 52551   Min.   : 1.0   0:27906   Min.   : 275.0   Min.   : 239  
##  1st Qu.:360487   1st Qu.: 6.0   1:32136   1st Qu.: 715.0   1st Qu.: 985  
##  Median :638706   Median :13.0             Median : 903.0   Median :1255  
##  Mean   :574939   Mean   :12.5             Mean   : 970.7   Mean   :1263  
##  3rd Qu.:788819   3rd Qu.:19.0             3rd Qu.:1201.0   3rd Qu.:1510  
##  Max.   :996072   Max.   :24.0             Max.   :2628.0   Max.   :2490  
##       RED            NIR            NDVI              mNDVI         
##  Min.   : 289   Min.   : 491   Min.   :-0.08606   Min.   :-39.0000  
##  1st Qu.:1114   1st Qu.:1756   1st Qu.: 0.11549   1st Qu.:  0.2795  
##  Median :1403   Median :2089   Median : 0.16071   Median :  0.3757  
##  Mean   :1436   Mean   :2157   Mean   : 0.20155   Mean   :  0.4174  
##  3rd Qu.:1733   3rd Qu.:2505   3rd Qu.: 0.25249   3rd Qu.:  0.5400  
##  Max.   :3186   Max.   :5078   Max.   : 0.77447   Max.   :  4.6471  
##       RVI              REEI             EVI                 SAVI        
##  Min.   :0.8415   Min.   :0.1271   Min.   :-143.1818   Min.   :-0.1290  
##  1st Qu.:1.2611   1st Qu.:0.5968   1st Qu.:   0.2855   1st Qu.: 0.1732  
##  Median :1.3830   Median :0.7231   Median :   0.4264   Median : 0.2410  
##  Mean   :1.5834   Mean   :0.6794   Mean   :   0.5608   Mean   : 0.3023  
##  3rd Qu.:1.6756   3rd Qu.:0.7929   3rd Qu.:   0.7229   3rd Qu.: 0.3787  
##  Max.   :7.8678   Max.   :1.1883   Max.   : 270.0000   Max.   : 1.1615  
##      MSAVI            OSAVI              mARI1            mARI2       
##  Min.   :0.3119   Min.   :-0.08605   Min.   :0.4095   Min.   : 299.2  
##  1st Qu.:0.7070   1st Qu.: 0.11548   1st Qu.:0.8171   1st Qu.:1535.0  
##  Median :0.7769   Median : 0.16071   Median :0.8721   Median :1861.5  
##  Mean   :0.8205   Mean   : 0.20154   Mean   :0.8879   Mean   :1924.1  
##  3rd Qu.:0.9031   3rd Qu.: 0.25247   3rd Qu.:0.9479   3rd Qu.:2261.6  
##  Max.   :1.3729   Max.   : 0.77443   Max.   :1.5722   Max.   :5524.6  
##       GCC               EG               FVC             YEAR      
##  Min.   :0.2153   Min.   :-1034.0   Min.   :-0.40205   2010:30021  
##  1st Qu.:0.3273   1st Qu.:  -72.0   1st Qu.: 0.08868   2011:30021  
##  Median :0.3444   Median :  114.0   Median : 0.20654               
##  Mean   :0.3456   Mean   :  119.6   Mean   : 0.31347               
##  3rd Qu.:0.3628   3rd Qu.:  293.0   3rd Qu.: 0.44608               
##  Max.   :0.4616   Max.   : 1236.0   Max.   : 1.72677               
##  group    
##  A:13953  
##  B:16068  
##  C:13953  
##  D:16068  
##           
## 
  ano_result<-c(NA)
  
f_anov<-function(data,var){
  
   .a<-anova(lm(data[[var]] ~ group, data))
    
    m1<-aov(data[[var]] ~ group,data=data)
    .c<-TukeyHSD(m1)
    return(c(var,.c$group[,4]))
    
}    
   
  anov_result<-sapply(vars[-length(vars)],f_anov,data=Anova_data)
  anov_result<-data.frame(t(anov_result))
  for(i in c(2:7)){anov_result[[i]]<-as.numeric(as.character(anov_result[[i]]))}
  names(anov_result)[1]<-c("VIs")
  print(anov_result,digits=4) 
##         VIs       B.A       C.A D.A C.B D.B D.C
## BLUE   BLUE 0.000e+00 0.000e+00   0   0   0   0
## GREEN GREEN 0.000e+00 0.000e+00   0   0   0   0
## RED     RED 0.000e+00 0.000e+00   0   0   0   0
## NIR     NIR 1.353e-12 0.000e+00   0   0   0   0
## NDVI   NDVI 0.000e+00 0.000e+00   0   0   0   0
## RVI     RVI 0.000e+00 3.719e-14   0   0   0   0
## SAVI   SAVI 0.000e+00 0.000e+00   0   0   0   0
## GCC     GCC 0.000e+00 0.000e+00   0   0   0   0
## EG       EG 0.000e+00 0.000e+00   0   0   0   0
## FVC     FVC 0.000e+00 0.000e+00   0   0   0   0

2.12 Statistic for all site

.linshi<-melt(Anova_data[c(2,4:21)],id=c(1,19))
site_sta<-dcast(.linshi,Site+YEAR~variable,mean)

site_sta<-merge(site_sta,AGB,by="Site",all.y=T)

site_sta<-site_sta[c("Density","Name","YEAR","NDVI","RVI","SAVI","GCC","EG","FVC","Ct")]
site_sta<-arrange(site_sta,desc(Density),Name,YEAR)
print(site_sta[-1],digits=3)
##       Name YEAR  NDVI  RVI  SAVI   GCC    EG    FVC   Ct
## 1  S1An1LD 2010 0.128 1.30 0.191 0.351 196.4 0.1135 19.3
## 2  S1An1LD 2011 0.127 1.30 0.190 0.327 -58.8 0.1242 19.3
## 3  S1An2LD 2010 0.114 1.26 0.170 0.353 227.7 0.0750 18.1
## 4  S1An2LD 2011 0.111 1.26 0.166 0.327 -85.4 0.0854 18.1
## 5  S1An3LD 2010 0.224 1.60 0.336 0.373 355.7 0.3796 26.8
## 6  S1An3LD 2011 0.143 1.35 0.214 0.330 -44.5 0.1644 26.8
## 7  S2An1LD 2010 0.158 1.38 0.237 0.363 314.7 0.1979 32.9
## 8  S2An1LD 2011 0.154 1.38 0.231 0.327 -62.3 0.1913 32.9
## 9  S2An2LD 2010 0.135 1.32 0.203 0.362 293.4 0.1346 41.7
## 10 S2An2LD 2011 0.160 1.40 0.239 0.329 -43.9 0.2055 41.7
## 11 S2An3LD 2010 0.139 1.33 0.209 0.355 232.7 0.1462 18.8
## 12 S2An3LD 2011 0.138 1.34 0.207 0.327 -73.1 0.1527 18.8
## 13 S1An1HD 2010 0.165 1.40 0.247 0.362 309.0 0.2159 23.8
## 14 S1An1HD 2011 0.131 1.31 0.197 0.331 -36.7 0.1353 23.8
## 15 S1An2HD 2010 0.135 1.32 0.203 0.361 298.6 0.1352 14.8
## 16 S1An2HD 2011 0.111 1.25 0.166 0.327 -83.2 0.0850 14.8
## 17 S1An3HD 2010 0.202 1.52 0.303 0.371 390.0 0.3185 22.1
## 18 S1An3HD 2011 0.127 1.30 0.191 0.332 -28.1 0.1257 22.1
## 19 S2An1HD 2010 0.131 1.30 0.196 0.352 192.1 0.1230 42.5
## 20 S2An1HD 2011 0.150 1.36 0.224 0.329 -37.7 0.1810 42.5
## 21 S2An2HD 2010 0.119 1.27 0.179 0.353 209.1 0.0905 24.5
## 22 S2An2HD 2011 0.132 1.31 0.198 0.329 -46.1 0.1383 24.5
## 23 S2An3HD 2010 0.142 1.33 0.213 0.356 232.6 0.1536 39.3
## 24 S2An3HD 2011 0.153 1.38 0.230 0.331 -16.3 0.1905 39.3

3 Write result

site_sta[4:8]<-round(site_sta[4:8],3)
names(site_sta)<-c("Density","Plot name","Year","NDVI","RVI","SAVI","FVC","Sequestered carbon (C, t/ha)")
write.table(site_sta[-1],"results/site_sta.txt",sep="&",row.names = F)


Rho[2:5]<-round(Rho[2:5],3)
write.table(Rho,"results/Rho.txt",sep="&",row.names = F)


diff_sea[-1]<-round(diff_sea[-1],3)
write.table(diff_sea[c(1,3,6,4,7)],"results/diff_sea.txt",sep="&",row.names = F)