read in data, center variables, create “stayed with default?” variable recoding other variables too
check % of people who chose SS in each condition - 1 is SS, 2 is LL, 3 is No Default the control condition falls in the middle of the other 2 default conditions
prop.test(table(all$cond, all$SS))
##
## 3-sample test for equality of proportions without continuity
## correction
##
## data: table(all$cond, all$SS)
## X-squared = 13.693, df = 2, p-value = 0.001063
## alternative hypothesis: two.sided
## sample estimates:
## prop 1 prop 2 prop 3
## 0.5961003 0.5172414 0.4598930
but the control condition is not significantly different from LL, only from SS
SScontrol<-subset(all, cond!="LL")
SScontrol<-droplevels(SScontrol)
prop.test(table(SScontrol$cond, SScontrol$SS))
##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: table(SScontrol$cond, SScontrol$SS)
## X-squared = 1.8014, df = 1, p-value = 0.1795
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.02481233 0.13950899
## sample estimates:
## prop 1 prop 2
## 0.5172414 0.4598930
LLcontrol<-subset(all, cond!="SS")
LLcontrol<-droplevels(LLcontrol)
prop.test(table(LLcontrol$cond, LLcontrol$SS))
##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: table(LLcontrol$cond, LLcontrol$SS)
## X-squared = 3.506, df = 1, p-value = 0.06115
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.003515819 0.161233618
## sample estimates:
## prop 1 prop 2
## 0.5961003 0.5172414
nocontrol<-subset(all, cond !="no")
nocontrol<-droplevels(nocontrol)
prop.test(table(nocontrol$cond, nocontrol$SS))
##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: table(nocontrol$cond, nocontrol$SS)
## X-squared = 13.091, df = 1, p-value = 0.0002967
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.0618704 0.2105441
## sample estimates:
## prop 1 prop 2
## 0.5961003 0.4598930
I think it’s easiest to understand how preferences (delta) interact with default condition if we break it down into first looking at SS default vs. no default, and then LL default vs. no default. We can look at all 3 together after.
First, SS vs. no default shows that setting the default as SS only has an effect for people above delta=.0053, i.e. people with relatively high discount rates for whom the SS option is the “preference consistent” option
summary(glm(SS ~ cond * delta, data=SScontrol, family="binomial"))
##
## Call:
## glm(formula = SS ~ cond * delta, family = "binomial", data = SScontrol)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2425 -1.0426 0.3399 1.1756 1.6100
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.2192 0.3294 -3.701 0.000215 ***
## condSS -1.1819 0.4848 -2.438 0.014765 *
## delta 205.8774 55.1224 3.735 0.000188 ***
## condSS:delta 268.5291 85.7616 3.131 0.001741 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 879.60 on 634 degrees of freedom
## Residual deviance: 788.19 on 631 degrees of freedom
## AIC: 796.19
##
## Number of Fisher Scoring iterations: 4
f1<-(glm(SS~cond*delta, data=SScontrol, family="binomial"))
library(visreg)
col<-c("black", "blue")
col2<-c("gray80", "cornflowerblue")
col3<-adjustcolor(col2, alpha=.7)
visreg(f1, "delta", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE, scale="response", xlab="discount rate", ylab="P (choosing SS)")
Similarly, for LL+control conditions only, condition only has an effect for delta<= .0056. In other words, setting the LL as default only has an effect for people who are relatively patient - those for whom the LL option is preference consistent
summary(glm(SS~cond*delta, data=LLcontrol,family="binomial"))
##
## Call:
## glm(formula = SS ~ cond * delta, family = "binomial", data = LLcontrol)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1495 -0.9882 -0.6989 1.0977 2.1427
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.6868 0.3229 -8.321 < 2e-16 ***
## condno 1.4677 0.4613 3.182 0.00146 **
## delta 392.7345 51.7727 7.586 3.31e-14 ***
## condno:delta -186.8571 75.6234 -2.471 0.01348 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 849.66 on 619 degrees of freedom
## Residual deviance: 757.91 on 616 degrees of freedom
## AIC: 765.91
##
## Number of Fisher Scoring iterations: 4
f2<-(glm(SS~cond*delta, data=LLcontrol,family="binomial"))
col<-c("red", "black")
col2<-c("indianred1" , "gray80")
col3<-adjustcolor(col2, alpha=.45)
visreg(f2, "delta", by="cond", line=list(col=col), fill=list(col=col3), overlay=TRUE, partial=FALSE, xlab="discount rate", scale="response", ylab="P (choosing SS)")
I think this discrete analysis is most straightforward and the most direct test of our theory:
patient people who saw the LL default and impatient people who saw the SS default saw a default that was consistent with their preferences. these people were much more likely to choose the default option than people who saw a default that was inconsistent with their preferences.
patient and impatient here is defined as 1st and 3rd quartiles
summary(all$delta)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.001147 0.003774 0.004619 0.005677 0.007121 0.013230
all$consistent[(all$deltac<=0.003775 & all$cond=="SS") | (all$deltac>=0.007145 & all$cond=="LL")]<-1
all$consistent[(all$deltac<=0.003775 & all$cond=="LL") | (all$deltac>=0.007145 & all$cond=="SS")]<-0
prop.test(table(all$stay, all$consistent))
##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: table(all$stay, all$consistent)
## X-squared = 12.99, df = 1, p-value = 0.0003132
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.22499232 -0.06591677
## sample estimates:
## prop 1 prop 2
## 0.4000000 0.5454545
confirming that the default only exists for people in the middle range of patience
summary(glm(SS~deltac*cond, data=nocontrol, family=binomial))
##
## Call:
## glm(formula = SS ~ deltac * cond, family = binomial, data = nocontrol)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2425 -0.9035 -0.6555 1.0435 2.1427
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.4573 0.1200 -3.811 0.000138 ***
## deltac 392.7345 51.7727 7.586 3.31e-14 ***
## condSS 0.7494 0.1698 4.414 1.01e-05 ***
## deltac:condSS 81.6720 83.6480 0.976 0.328877
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1014.08 on 732 degrees of freedom
## Residual deviance: 853.78 on 729 degrees of freedom
## AIC: 861.78
##
## Number of Fisher Scoring iterations: 4
summary(all$deltac)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.004530 -0.001903 -0.001058 0.000000 0.001445 0.007551
patient<-subset(nocontrol, deltac <= -0.001924)
impatient<-subset(nocontrol, deltac >= 0.001446)
middle<-subset(nocontrol, nocontrol$deltac > -0.001924 & nocontrol$deltac < 0.001446)
prop.test(table(patient$SS, patient$cond))
##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: table(patient$SS, patient$cond)
## X-squared = 0.0010801, df = 1, p-value = 0.9738
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.1953572 0.2431733
## sample estimates:
## prop 1 prop 2
## 0.5066667 0.4827586
prop.test(table(impatient$SS, impatient$cond))
##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: table(impatient$SS, impatient$cond)
## X-squared = 0.8518, df = 1, p-value = 0.356
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.08835742 0.27892589
## sample estimates:
## prop 1 prop 2
## 0.5813953 0.4861111
prop.test(table(middle$SS, middle$cond))
##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: table(middle$SS, middle$cond)
## X-squared = 19.322, df = 1, p-value = 1.104e-05
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.1301713 0.3396637
## sample estimates:
## prop 1 prop 2
## 0.5854922 0.3505747
let’s look at reactance! it seems to increase as people’s preferences become less consistent with the default they see
nocontrol<-subset(all, cond!="no")
r<-(glm(statereactance ~ delta*cond, data=nocontrol))
visreg(r, "delta", by="cond", overlay=TRUE, partial=FALSE, ylab="reactance")
and it seems to at least partially mediate:
summary(glm(statereactance ~ cond*delta, data=nocontrol))
##
## Call:
## glm(formula = statereactance ~ cond * delta, data = nocontrol)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -5.2690 -1.4290 -0.3931 1.3556 9.9139
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.9146 0.3269 21.153 <2e-16 ***
## condSS 1.2376 0.4752 2.604 0.0094 **
## delta 110.9106 51.7566 2.143 0.0324 *
## condSS:delta -212.0196 76.7833 -2.761 0.0059 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 6.362394)
##
## Null deviance: 4687.8 on 732 degrees of freedom
## Residual deviance: 4638.2 on 729 degrees of freedom
## AIC: 3442.5
##
## Number of Fisher Scoring iterations: 2
summary(glm(stay ~ statereactance, data=nocontrol, family=binomial))
##
## Call:
## glm(formula = stay ~ statereactance, family = binomial, data = nocontrol)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5450 -1.2740 0.9395 1.0345 1.5621
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.19712 0.24405 4.905 9.33e-07 ***
## statereactance -0.12161 0.03039 -4.001 6.30e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1002.74 on 732 degrees of freedom
## Residual deviance: 986.17 on 731 degrees of freedom
## AIC: 990.17
##
## Number of Fisher Scoring iterations: 4
summary(glm(stay ~ cond*delta, data=nocontrol, family=binomial))
##
## Call:
## glm(formula = stay ~ cond * delta, family = binomial, data = nocontrol)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2425 -0.9609 0.5854 0.8355 2.1495
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.6868 0.3229 8.321 < 2e-16 ***
## condSS -5.0879 0.4803 -10.592 < 2e-16 ***
## delta -392.7345 51.7727 -7.586 3.31e-14 ***
## condSS:delta 867.1409 83.6480 10.367 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1002.74 on 732 degrees of freedom
## Residual deviance: 853.78 on 729 degrees of freedom
## AIC: 861.78
##
## Number of Fisher Scoring iterations: 4
summary(glm(stay ~ statereactance + cond*delta, data=nocontrol, family=binomial))
##
## Call:
## glm(formula = stay ~ statereactance + cond * delta, family = binomial,
## data = nocontrol)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.3087 -0.9548 0.5477 0.8779 2.2407
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.48065 0.41612 8.365 < 2e-16 ***
## statereactance -0.10866 0.03382 -3.213 0.00131 **
## condSS -5.04861 0.48512 -10.407 < 2e-16 ***
## delta -386.89805 52.05515 -7.432 1.07e-13 ***
## condSS:delta 860.36668 84.43757 10.189 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1002.74 on 732 degrees of freedom
## Residual deviance: 843.25 on 728 degrees of freedom
## AIC: 853.25
##
## Number of Fisher Scoring iterations: 4
at least in the LL condition
LL<-subset(all, cond=="LL")
summary(glm(statereactance ~ delta, data=LL))
##
## Call:
## glm(formula = statereactance ~ delta, data = LL)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -5.2690 -1.4191 -0.3571 1.5707 7.6431
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.9146 0.3256 21.237 <2e-16 ***
## delta 110.9106 51.5523 2.151 0.0321 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 6.312252)
##
## Null deviance: 2282.7 on 358 degrees of freedom
## Residual deviance: 2253.5 on 357 degrees of freedom
## AIC: 1684.2
##
## Number of Fisher Scoring iterations: 2
summary(glm(SS ~ delta, data= LL))
##
## Call:
## glm(formula = SS ~ delta, data = LL)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.9646 -0.2994 -0.2193 0.3620 0.9734
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.07957 0.05728 -1.389 0.166
## delta 83.81771 9.06960 9.242 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1953732)
##
## Null deviance: 86.435 on 358 degrees of freedom
## Residual deviance: 69.748 on 357 degrees of freedom
## AIC: 436.6
##
## Number of Fisher Scoring iterations: 2
summary(glm(SS ~ statereactance, data=LL))
##
## Call:
## glm(formula = SS ~ statereactance, data = LL)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.5485 -0.3892 -0.3361 0.5577 0.7170
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.20327 0.08125 2.502 0.01281 *
## statereactance 0.02656 0.01020 2.603 0.00962 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.2376036)
##
## Null deviance: 86.435 on 358 degrees of freedom
## Residual deviance: 84.824 on 357 degrees of freedom
## AIC: 506.85
##
## Number of Fisher Scoring iterations: 2
summary(glm(SS ~ statereactance + delta, data=LL))
##
## Call:
## glm(formula = SS ~ statereactance + delta, data = LL)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.9937 -0.2983 -0.1957 0.3864 0.9402
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.19784 0.08589 -2.304 0.0218 *
## statereactance 0.01710 0.00928 1.843 0.0661 .
## delta 81.92066 9.09772 9.005 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1940702)
##
## Null deviance: 86.435 on 358 degrees of freedom
## Residual deviance: 69.089 on 356 degrees of freedom
## AIC: 435.19
##
## Number of Fisher Scoring iterations: 2
not in SS
SS<-subset(all, cond=="SS")
summary(glm(statereactance ~ delta, data=SS))
##
## Call:
## glm(formula = statereactance ~ delta, data = SS)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.828 -1.481 -0.443 1.315 9.914
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.1522 0.3462 23.544 <2e-16 ***
## delta -101.1090 56.9320 -1.776 0.0766 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 6.410515)
##
## Null deviance: 2404.9 on 373 degrees of freedom
## Residual deviance: 2384.7 on 372 degrees of freedom
## AIC: 1760.2
##
## Number of Fisher Scoring iterations: 2
summary(glm(SS ~ delta, data= SS))
##
## Call:
## glm(formula = SS ~ delta, data = SS)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.95105 -0.39693 0.00488 0.46804 0.69699
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.03197 0.06213 0.514 0.607
## delta 90.25228 10.21612 8.834 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.2064203)
##
## Null deviance: 92.898 on 373 degrees of freedom
## Residual deviance: 76.788 on 372 degrees of freedom
## AIC: 475.25
##
## Number of Fisher Scoring iterations: 2
summary(glm(SS ~ statereactance, data=SS))
##
## Call:
## glm(formula = SS ~ statereactance, data = SS)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.6864 -0.5268 0.3136 0.4413 0.7604
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.78208 0.08040 9.728 < 2e-16 ***
## statereactance -0.03191 0.01005 -3.174 0.00163 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.2431437)
##
## Null deviance: 92.898 on 373 degrees of freedom
## Residual deviance: 90.449 on 372 degrees of freedom
## AIC: 536.49
##
## Number of Fisher Scoring iterations: 2
summary(glm(SS ~ statereactance + delta, data=SS))
##
## Call:
## glm(formula = SS ~ statereactance + delta, data = SS)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.98153 -0.39206 -0.03113 0.45495 0.79918
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.232616 0.097250 2.392 0.01726 *
## statereactance -0.024613 0.009228 -2.667 0.00798 **
## delta 87.763668 10.176062 8.625 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.2030827)
##
## Null deviance: 92.898 on 373 degrees of freedom
## Residual deviance: 75.344 on 371 degrees of freedom
## AIC: 470.14
##
## Number of Fisher Scoring iterations: 2
Looking at preference certainty
all$prefcertainty<-(all$prefstrength1 + all$prefstrength2)/2
summary(all$prefcertainty)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 2.000 4.000 4.500 4.399 5.000 5.000 446
certain<-subset(all, prefcertainty>=4.5)
uncertain<-subset(all, prefcertainty<=4.5)
#prefernce certainty didnt have a significant effect on staying with the default
summary(glm(stay~prefcertainty, data=all, family=binomial))
##
## Call:
## glm(formula = stay ~ prefcertainty, family = binomial, data = all)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.351 -1.260 1.055 1.097 1.119
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.6593 0.7809 0.844 0.399
## prefcertainty -0.1040 0.1752 -0.594 0.553
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 510.62 on 370 degrees of freedom
## Residual deviance: 510.27 on 369 degrees of freedom
## (623 observations deleted due to missingness)
## AIC: 514.27
##
## Number of Fisher Scoring iterations: 3
#it did interact with condition, but in an unexpected way (lower preference certainty did increase the probability of choosing the default option in the SS default condition, but the opposite was true in the LL default condition. This appears to be due to the fact that preference certainty was correlated with preference extremity
summary(glm(stay~prefcertainty*cond, data=all, family=binomial))
##
## Call:
## glm(formula = stay ~ prefcertainty * cond, family = binomial,
## data = all)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5740 -1.1661 0.8754 1.0037 1.5887
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.6201 1.1505 -2.277 0.0228 *
## prefcertainty 0.6763 0.2589 2.612 0.0090 **
## condSS 6.7481 1.6752 4.028 5.62e-05 ***
## prefcertainty:condSS -1.5996 0.3759 -4.255 2.09e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 510.62 on 370 degrees of freedom
## Residual deviance: 488.58 on 367 degrees of freedom
## (623 observations deleted due to missingness)
## AIC: 496.58
##
## Number of Fisher Scoring iterations: 4
cor.test(all$prefcertainty, all$deltac)
##
## Pearson's product-moment correlation
##
## data: all$prefcertainty and all$deltac
## t = -6.3605, df = 546, p-value = 4.257e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.3389482 -0.1829107
## sample estimates:
## cor
## -0.2626458
#there was no 3 way interaction between preferences, preference certainty, and condition
summary(glm(stay~prefcertainty*deltac*cond, data=all, family=binomial))
##
## Call:
## glm(formula = stay ~ prefcertainty * deltac * cond, family = binomial,
## data = all)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2566 -0.9015 0.5024 0.8523 2.1806
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.7237 1.2694 -1.358 0.17452
## prefcertainty 0.4831 0.2853 1.694 0.09035 .
## deltac -255.8227 492.8295 -0.519 0.60370
## condSS 4.8173 1.8456 2.610 0.00905 **
## prefcertainty:deltac -21.5980 110.6875 -0.195 0.84529
## prefcertainty:condSS -1.1513 0.4157 -2.770 0.00561 **
## deltac:condSS 729.9731 853.1518 0.856 0.39221
## prefcertainty:deltac:condSS 16.4295 191.7043 0.086 0.93170
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 510.62 on 370 degrees of freedom
## Residual deviance: 424.98 on 363 degrees of freedom
## (623 observations deleted due to missingness)
## AIC: 440.98
##
## Number of Fisher Scoring iterations: 4
table(all$stay)