regression model on crimedataset

About Data:Data collected from given sourse

cdata=read.csv("http://www.ats.ucla.edu/stat/data/crime.csv")
#Desription of data
colnames(cdata)
## [1] "sid"      "state"    "crime"    "murder"   "pctmetro" "pctwhite"
## [7] "pcths"    "poverty"  "single"
##[1] "sid"      "state"    "crime"    "murder"   "pctmetro"
##[6] "pctwhite" "pcths"    "poverty"  "single" 

summary(cdata)
##       sid           state        crime            murder      
##  Min.   : 1.0   ak     : 1   Min.   :  82.0   Min.   : 1.600  
##  1st Qu.:13.5   al     : 1   1st Qu.: 326.5   1st Qu.: 3.900  
##  Median :26.0   ar     : 1   Median : 515.0   Median : 6.800  
##  Mean   :26.0   az     : 1   Mean   : 612.8   Mean   : 8.727  
##  3rd Qu.:38.5   ca     : 1   3rd Qu.: 773.0   3rd Qu.:10.350  
##  Max.   :51.0   co     : 1   Max.   :2922.0   Max.   :78.500  
##                 (Other):45                                    
##     pctmetro         pctwhite         pcths          poverty     
##  Min.   : 24.00   Min.   :31.80   Min.   :64.30   Min.   : 8.00  
##  1st Qu.: 49.55   1st Qu.:79.35   1st Qu.:73.50   1st Qu.:10.70  
##  Median : 69.80   Median :87.60   Median :76.70   Median :13.10  
##  Mean   : 67.39   Mean   :84.12   Mean   :76.22   Mean   :14.26  
##  3rd Qu.: 83.95   3rd Qu.:92.60   3rd Qu.:80.10   3rd Qu.:17.40  
##  Max.   :100.00   Max.   :98.50   Max.   :86.60   Max.   :26.40  
##                                                                  
##      single     
##  Min.   : 8.40  
##  1st Qu.:10.05  
##  Median :10.90  
##  Mean   :11.33  
##  3rd Qu.:12.05  
##  Max.   :22.10  
## 
#Structure of Data
str(cdata)
## 'data.frame':    51 obs. of  9 variables:
##  $ sid     : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ state   : Factor w/ 51 levels "ak","al","ar",..: 1 2 3 4 5 6 7 9 10 11 ...
##  $ crime   : int  761 780 593 715 1078 567 456 686 1206 723 ...
##  $ murder  : num  9 11.6 10.2 8.6 13.1 5.8 6.3 5 8.9 11.4 ...
##  $ pctmetro: num  41.8 67.4 44.7 84.7 96.7 81.8 95.7 82.7 93 67.7 ...
##  $ pctwhite: num  75.2 73.5 82.9 88.6 79.3 92.5 89 79.4 83.5 70.8 ...
##  $ pcths   : num  86.6 66.9 66.3 78.7 76.2 84.4 79.2 77.5 74.4 70.9 ...
##  $ poverty : num  9.1 17.4 20 15.4 18.2 9.9 8.5 10.2 17.8 13.5 ...
##  $ single  : num  14.3 11.5 10.7 12.1 12.5 12.1 10.1 11.4 10.6 13 ...
#convert factor to integer
cdata$state=as.integer(cdata$state)

#correlation of Dataset
cor(cdata)
##                  sid       state       crime     murder     pctmetro
## sid       1.00000000  0.91438914 -0.02415886  0.1472809 -0.059470078
## state     0.91438914  1.00000000 -0.33605860 -0.2385265 -0.149900624
## crime    -0.02415886 -0.33605860  1.00000000  0.8861963  0.544038822
## murder    0.14728088 -0.23852648  0.88619634  1.0000000  0.316114166
## pctmetro -0.05947008 -0.14990062  0.54403882  0.3161142  1.000000000
## pctwhite  0.09077618  0.32514433 -0.67717567 -0.7061927 -0.337220734
## pcths    -0.02352875  0.00839625 -0.25605205 -0.2860708 -0.003977358
## poverty   0.12108646 -0.03530466  0.50950799  0.5658711 -0.060538499
## single    0.05402958 -0.24915755  0.83887477  0.8589106  0.259810085
##             pctwhite        pcths     poverty      single
## sid       0.09077618 -0.023528747  0.12108646  0.05402958
## state     0.32514433  0.008396250 -0.03530466 -0.24915755
## crime    -0.67717567 -0.256052045  0.50950799  0.83887477
## murder   -0.70619268 -0.286070828  0.56587107  0.85891063
## pctmetro -0.33722073 -0.003977358 -0.06053850  0.25981008
## pctwhite  1.00000000  0.338547615 -0.38929368 -0.65643738
## pcths     0.33854762  1.000000000 -0.74393825 -0.21978289
## poverty  -0.38929368 -0.743938249  1.00000000  0.54858904
## single   -0.65643738 -0.219782892  0.54858904  1.00000000
# Plot of Correlations
library(corrplot)
## Warning: package 'corrplot' was built under R version 3.2.5
me<-cor(cdata)
corrplot(me, method = "circle") 

#Apply Regression Model
nfit=lm(crime~poverty+single,cdata)
#Summary of Model
summary(nfit)
## 
## Call:
## lm(formula = crime ~ poverty + single, data = cdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -811.14 -114.27  -22.44  121.86  689.82 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1368.189    187.205  -7.308 2.48e-09 ***
## poverty         6.787      8.989   0.755    0.454    
## single        166.373     19.423   8.566 3.12e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 243.6 on 48 degrees of freedom
## Multiple R-squared:  0.7072, Adjusted R-squared:  0.695 
## F-statistic: 57.96 on 2 and 48 DF,  p-value: 1.578e-13
#Regression model by cosidering more influencing factors(varibles)
newfit=lm(crime~murder+pctmetro+poverty+single,cdata)
# summary of new model
summary(newfit)
## 
## Call:
## lm(formula = crime ~ murder + pctmetro + poverty + single, data = cdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -336.19  -97.58  -14.32   82.84  432.86 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -809.917    215.010  -3.767 0.000469 ***
## murder        19.807      4.099   4.832 1.54e-05 ***
## pctmetro       6.496      1.069   6.076 2.23e-07 ***
## poverty        9.553      5.956   1.604 0.115585    
## single        59.683     19.732   3.025 0.004064 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 149.9 on 46 degrees of freedom
## Multiple R-squared:  0.8938, Adjusted R-squared:  0.8845 
## F-statistic: 96.76 on 4 and 46 DF,  p-value: < 2.2e-16

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.