Storm Events that are Most Harmful and Economically Damaging in the U.S. between 1950 and 2011

Synopsis

The purpose of this report is to find out which types of weather events caused the greatest economical damage across the United States and which types were most phycally harmful to people across the nation. Storm Data, an official publication of the National Oceanic and Atmospheric Administration, documents “the occurrence of storms and other significant weather phenomena having sufficient intensity to cause loss of life, injuries, significant property damage, and/or disruption to commerce”. We obtained Storm Data from 1950 though November 2011 and created three different groups. The first group includes the top 10 events that caused most economical damage. The second group contains the top 10 events that caused most injuries and the third group causing most fatalities. Based on our analysis, we found the following; 1) the most harmful weather event based on both fatalities and injuries was, by far, the tornado, 2) the event that caused the greatest economical damage was the flood, 3) three events that were included in the top 5 lists on both injury and fatality groups were the tornado, excessive heat and lightning, and 4) the only event that showed up in the top 5 lists for all the categories was the tornado.

Data Processing

We read in a csv file containing Storm Data collected between January 1950 and November 2011. We then check to see how many rows there are in the dataset and see what the data look like in the first six rows.

stormData <- read.csv("repdata-data-StormData.csv.bz2")
dim(stormData)
## [1] 902297     37
head(stormData)
##   STATE__           BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1       1  4/18/1950 0:00:00     0130       CST     97     MOBILE    AL
## 2       1  4/18/1950 0:00:00     0145       CST      3    BALDWIN    AL
## 3       1  2/20/1951 0:00:00     1600       CST     57    FAYETTE    AL
## 4       1   6/8/1951 0:00:00     0900       CST     89    MADISON    AL
## 5       1 11/15/1951 0:00:00     1500       CST     43    CULLMAN    AL
## 6       1 11/15/1951 0:00:00     2000       CST     77 LAUDERDALE    AL
##    EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END
## 1 TORNADO         0                                               0
## 2 TORNADO         0                                               0
## 3 TORNADO         0                                               0
## 4 TORNADO         0                                               0
## 5 TORNADO         0                                               0
## 6 TORNADO         0                                               0
##   COUNTYENDN END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES
## 1         NA         0                      14.0   100 3   0          0
## 2         NA         0                       2.0   150 2   0          0
## 3         NA         0                       0.1   123 2   0          0
## 4         NA         0                       0.0   100 2   0          0
## 5         NA         0                       0.0   150 2   0          0
## 6         NA         0                       1.5   177 2   0          0
##   INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES
## 1       15    25.0          K       0                                    
## 2        0     2.5          K       0                                    
## 3        2    25.0          K       0                                    
## 4        2     2.5          K       0                                    
## 5        2     2.5          K       0                                    
## 6        6     2.5          K       0                                    
##   LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1     3040      8812       3051       8806              1
## 2     3042      8755          0          0              2
## 3     3340      8742          0          0              3
## 4     3458      8626          0          0              4
## 5     3412      8642          0          0              5
## 6     3450      8748          0          0              6

Missing Values

Columns we are interested for this study are as follows: “EVTYPE”, “FATALITIES”, “INJURIES”, “PROPDMG”, “PROPDMGEXP”, “CROPDMG”, “CROPDMGEXP”. To see how many missing values are there in numeric fields, “FATALITIES”, “INJURIES”, “PROPDMG”, and “CROPDMG”, do the following.

stormDamageNumeric <- stormData[,23:25]
CROPDMG = stormData$CROPDMG
stormDamageNumeric <- cbind(stormDamageNumeric, CROPDMG)
summary(is.na(stormDamageNumeric))
##  FATALITIES       INJURIES        PROPDMG         CROPDMG       
##  Mode :logical   Mode :logical   Mode :logical   Mode :logical  
##  FALSE:902297    FALSE:902297    FALSE:902297    FALSE:902297   
##  NA's :0         NA's :0         NA's :0         NA's :0

Based on the above analysis, we conclude that missing value is not a problem in this dataset.

Converting K, M, B

The columns, “PROPDMGEXP” and “CROPDMGEXP” contain letters, “K”, “M” and “B” to represent 1000, 1000,000 and 1000,000,000. We have to convert these letters and calculate the actual damage in each observation.

library(dplyr) 
stormDamage <- select(stormData, EVTYPE, FATALITIES:CROPDMGEXP) ##create a subset
PDE <- vector(mode = "numeric", length = 902297)
for (i in 1:902297) {
  if (stormDamage$PROPDMGEXP[i] == "K") {PDE[i] = stormDamage$PROPDMG[i] * 1000}
  else if (stormDamage$PROPDMGEXP[i] == "M") {PDE[i] = stormDamage$PROPDMG[i] * 1000000}
  else if (stormDamage$PROPDMGEXP[i] == "B") {PDE[i] = stormDamage$PROPDMG[i] * 1000000000}
  else {PDE[i] = stormDamage$PROPDMG[i]}
}
CDE <- vector(mode = "numeric", length = 902297)
total <- vector(mode = "numeric", length = 902297)
for (i in 1:902297) {
  if (stormDamage$CROPDMGEXP[i] == "K") {CDE[i] = stormDamage$CROPDMG[i] * 1000}
  else if (stormDamage$CROPDMGEXP[i] == "k") {CDE[i] = stormDamage$CROPDMG[i] * 1000}
  else if (stormDamage$CROPDMGEXP[i] == "M") {CDE[i] = stormDamage$CROPDMG[i] * 1000000}
  else if (stormDamage$CROPDMGEXP[i] == "B") {CDE[i] = stormDamage$CROPDMG[i] * 1000000000}
  else {CDE[i] = stormDamage$CROPDMG[i]}
  total[i] = PDE[i] + CDE[i]
}
stormDamage = cbind(stormDamage, PDE, CDE, total)

Results

Create Three Categories

In order to find out which weather types are causing most economical damage, most injuries, and most fatalities separately, we create three groups as follows and look at only top 10 event types.

EVTYPES <- group_by(stormDamage, EVTYPE)
sumDamage <- summarise(EVTYPES, total=sum(total))
sumInjury <- summarise(EVTYPES, INJURIES=sum(INJURIES))
sumFatal <- summarise(EVTYPES, FATALITIES=sum(FATALITIES))
sumDamDesc <- sumDamage[rev(order(sumDamage$total)),]
sumInjDesc <- sumInjury[rev(order(sumInjury$INJURIES)),]
sumFatalDesc <- sumFatal[rev(order(sumFatal$FATALITIES)),]
sumDamDesc = sumDamDesc[1:10,]
sumDamDesc
## Source: local data frame [10 x 2]
## 
##               EVTYPE        total
##               <fctr>        <dbl>
## 1              FLOOD 150319678257
## 2  HURRICANE/TYPHOON  71913712800
## 3            TORNADO  57340614060
## 4        STORM SURGE  43323541000
## 5               HAIL  18753321526
## 6        FLASH FLOOD  17562129167
## 7            DROUGHT  15018672000
## 8          HURRICANE  14610229010
## 9        RIVER FLOOD  10148404500
## 10         ICE STORM   8967041360
sumInjDesc = sumInjDesc[1:10,]
sumInjDesc
## Source: local data frame [10 x 2]
## 
##               EVTYPE INJURIES
##               <fctr>    <dbl>
## 1            TORNADO    91346
## 2          TSTM WIND     6957
## 3              FLOOD     6789
## 4     EXCESSIVE HEAT     6525
## 5          LIGHTNING     5230
## 6               HEAT     2100
## 7          ICE STORM     1975
## 8        FLASH FLOOD     1777
## 9  THUNDERSTORM WIND     1488
## 10              HAIL     1361
sumFatalDesc = sumFatalDesc[1:10,]
sumFatalDesc
## Source: local data frame [10 x 2]
## 
##            EVTYPE FATALITIES
##            <fctr>      <dbl>
## 1         TORNADO       5633
## 2  EXCESSIVE HEAT       1903
## 3     FLASH FLOOD        978
## 4            HEAT        937
## 5       LIGHTNING        816
## 6       TSTM WIND        504
## 7           FLOOD        470
## 8     RIP CURRENT        368
## 9       HIGH WIND        248
## 10      AVALANCHE        224
sumDamDesc$EVTYPE <- ordered(sumDamDesc$EVTYPE, levels=levels(sumDamDesc$EVTYPE)[unclass(sumDamDesc$EVTYPE)])
sumInjDesc$EVTYPE <- ordered(sumInjDesc$EVTYPE, levels=levels(sumInjDesc$EVTYPE)[unclass(sumInjDesc$EVTYPE)])
sumFatalDesc$EVTYPE <- ordered(sumFatalDesc$EVTYPE, levels=levels(sumFatalDesc$EVTYPE)[unclass(sumFatalDesc$EVTYPE)])
Graphical Representation

We plot top 10 weather events to visually understand the effects of each event in each category.

library(ggplot2)
EVTYPES <- group_by(stormDamage, EVTYPE)
sumDamage <- summarise(EVTYPES, total=sum(total))
sumInjury <- summarise(EVTYPES, INJURIES=sum(INJURIES))
sumFatal <- summarise(EVTYPES, FATALITIES=sum(FATALITIES))
sumDamDesc <- sumDamage[rev(order(sumDamage$total)),]
sumInjDesc <- sumInjury[rev(order(sumInjury$INJURIES)),]
sumFatalDesc <- sumFatal[rev(order(sumFatal$FATALITIES)),]
sumDamDesc = sumDamDesc[1:10,]
sumInjDesc = sumInjDesc[1:10,]
sumFatalDesc = sumFatalDesc[1:10,]
sumDamDesc$EVTYPE <- ordered(sumDamDesc$EVTYPE, levels=levels(sumDamDesc$EVTYPE)[unclass(sumDamDesc$EVTYPE)])
sumInjDesc$EVTYPE <- ordered(sumInjDesc$EVTYPE, levels=levels(sumInjDesc$EVTYPE)[unclass(sumInjDesc$EVTYPE)])
sumFatalDesc$EVTYPE <- ordered(sumFatalDesc$EVTYPE, levels=levels(sumFatalDesc$EVTYPE)[unclass(sumFatalDesc$EVTYPE)])
ggplot(data=sumDamDesc, aes(x=EVTYPE, y=total)) + geom_bar(fill = "steelblue", stat="identity") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + labs(title = "Economic Damage Caused by Various Weather Events", x = "Weather Event Type", y = "total damage in $")

ggplot(data=sumInjDesc, aes(x=EVTYPE, y=INJURIES)) + geom_bar(fill = "khaki1", stat="identity") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + labs(title = "Number of Injuries Caused by Various Weather Events", x = "Weather Event Type", y = "Number of Injuries")

ggplot(data=sumFatalDesc, aes(x=EVTYPE, y=FATALITIES)) + geom_bar(fill = "plum3", stat="identity") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + labs(title = "Number of Fatalities Caused by Various Weather Events", x = "Weather Event Type", y = "Number of Fatalities")