## DEFINEDNAME: 21 00 00 01 0b 00 00 00 01 00 00 00 00 00 00 0d 3b 02 00 00 00 88 01 01 00 11 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 02 00 00 00 00 00 00 0d 3b 00 00 00 00 9a 01 01 00 12 00 
## DEFINEDNAME: 8b 03 00 0e 02 00 00 00 00 00 00 00 00 00 00 5f 78 6c 66 6e 2e 42 41 48 54 54 45 58 54 1c 1d 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 01 00 00 00 00 00 00 0d 3b 02 00 00 00 88 01 01 00 11 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 02 00 00 00 00 00 00 0d 3b 00 00 00 00 9a 01 01 00 12 00 
## DEFINEDNAME: 8b 03 00 0e 02 00 00 00 00 00 00 00 00 00 00 5f 78 6c 66 6e 2e 42 41 48 54 54 45 58 54 1c 1d 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 01 00 00 00 00 00 00 0d 3b 02 00 00 00 88 01 01 00 11 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 02 00 00 00 00 00 00 0d 3b 00 00 00 00 9a 01 01 00 12 00 
## DEFINEDNAME: 8b 03 00 0e 02 00 00 00 00 00 00 00 00 00 00 5f 78 6c 66 6e 2e 42 41 48 54 54 45 58 54 1c 1d 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 01 00 00 00 00 00 00 0d 3b 02 00 00 00 88 01 01 00 11 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 02 00 00 00 00 00 00 0d 3b 00 00 00 00 9a 01 01 00 12 00 
## DEFINEDNAME: 8b 03 00 0e 02 00 00 00 00 00 00 00 00 00 00 5f 78 6c 66 6e 2e 42 41 48 54 54 45 58 54 1c 1d 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 01 00 00 00 00 00 00 0d 3b 02 00 00 00 88 01 01 00 11 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 02 00 00 00 00 00 00 0d 3b 00 00 00 00 9a 01 01 00 12 00 
## DEFINEDNAME: 8b 03 00 0e 02 00 00 00 00 00 00 00 00 00 00 5f 78 6c 66 6e 2e 42 41 48 54 54 45 58 54 1c 1d
## 
##   A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q 
##  31  69  58  28   1  11  42  47  18   3   3 156  13   1  62   1  17

Survival of song types vs acoustic parameters

## 
## Confidence set for the best model
## 
## Method:   raw sum of model probabilities
## 
## 95% confidence set:
##                                      K  AICc Delta_AICc AICcWt
## survival~modindx                     3 55.56       0.00   0.49
## survival~modindx + meanSTsp$skew     4 58.21       2.65   0.13
## survival~modindx + meanSTsp$sp.ent   4 58.76       3.20   0.10
## survival~modindx + meanSTsp$dfrange  4 59.84       4.29   0.06
## survival~duration + meanSTsp$modindx 4 59.88       4.32   0.06
## survival~modindx + meanSTsp$meandom  4 59.89       4.33   0.06
## survival~skew                        3 61.34       5.78   0.03
## survival~meandom                     3 62.07       6.52   0.02
## survival~dfrange                     3 62.12       6.56   0.02
## 
## Model probabilities sum to 0.95
## 
## Multimodel inference on "meanSTsp$modindx" based on AICc
## 
## AICc table used to obtain model-averaged estimate:
## 
##                                      K  AICc Delta_AICc AICcWt Estimate
## survival~modindx                     3 55.56       0.00   0.55   -48.69
## survival~duration + meanSTsp$modindx 4 59.88       4.32   0.06   -48.69
## survival~modindx + meanSTsp$skew     4 58.21       2.65   0.15   -48.81
## survival~modindx + meanSTsp$sp.ent   4 58.76       3.20   0.11   -58.06
## survival~modindx + meanSTsp$meandom  4 59.89       4.33   0.06   -48.68
## survival~modindx + meanSTsp$dfrange  4 59.84       4.29   0.06   -48.31
##                                         SE
## survival~modindx                     17.83
## survival~duration + meanSTsp$modindx 18.69
## survival~modindx + meanSTsp$skew     17.53
## survival~modindx + meanSTsp$sp.ent   20.42
## survival~modindx + meanSTsp$meandom  19.08
## survival~modindx + meanSTsp$dfrange  18.77
## 
## Model-averaged estimate: -49.73 
## Unconditional SE: 18.52 
## 95% Unconditional confidence interval: -86.03, -13.42
## 
## Multimodel inference on "meanSTsp$duration" based on AICc
## 
## AICc table used to obtain model-averaged estimate:
## 
##                                      K  AICc Delta_AICc AICcWt Estimate
## survival~duration + meanSTsp$modindx 4 59.88          0      1     3.19
##                                         SE
## survival~duration + meanSTsp$modindx 34.17
## 
## Model-averaged estimate: 3.19 
## Unconditional SE: 34.17 
## 95% Unconditional confidence interval: -63.78, 70.16
## 
## Multimodel inference on "meanSTsp$skew" based on AICc
## 
## AICc table used to obtain model-averaged estimate:
## 
##                                  K  AICc Delta_AICc AICcWt Estimate   SE
## survival~skew                    3 61.34       3.13   0.17    -0.72 0.79
## survival~modindx + meanSTsp$skew 4 58.21       0.00   0.83    -0.73 0.62
## 
## Model-averaged estimate: -0.73 
## Unconditional SE: 0.66 
## 95% Unconditional confidence interval: -2.02, 0.55
## 
## Multimodel inference on "meanSTsp$sp.ent" based on AICc
## 
## AICc table used to obtain model-averaged estimate:
## 
##                                    K  AICc Delta_AICc AICcWt Estimate
## survival~modindx + meanSTsp$sp.ent 4 58.76          0      1    13.42
##                                       SE
## survival~modindx + meanSTsp$sp.ent 14.07
## 
## Model-averaged estimate: 13.42 
## Unconditional SE: 14.07 
## 95% Unconditional confidence interval: -14.15, 40.99
## 
## Multimodel inference on "meanSTsp$meandom" based on AICc
## 
## AICc table used to obtain model-averaged estimate:
## 
##                                     K  AICc Delta_AICc AICcWt Estimate
## survival~meandom                    3 62.07       2.18   0.25     0.32
## survival~modindx + meanSTsp$meandom 4 59.89       0.00   0.75     0.00
##                                       SE
## survival~meandom                    0.74
## survival~modindx + meanSTsp$meandom 0.62
## 
## Model-averaged estimate: 0.08 
## Unconditional SE: 0.67 
## 95% Unconditional confidence interval: -1.23, 1.39
## 
## Multimodel inference on "meanSTsp$dfrange" based on AICc
## 
## AICc table used to obtain model-averaged estimate:
## 
##                                     K  AICc Delta_AICc AICcWt Estimate
## survival~dfrange                    3 62.12       2.27   0.24     0.08
## survival~modindx + meanSTsp$dfrange 4 59.84       0.00   0.76     0.03
##                                       SE
## survival~dfrange                    0.20
## survival~modindx + meanSTsp$dfrange 0.17
## 
## Model-averaged estimate: 0.04 
## Unconditional SE: 0.18 
## 95% Unconditional confidence interval: -0.31, 0.39

Survival of song types vs acoustic parameters

## 
## Confidence set for the best model
## 
## Method:   raw sum of model probabilities
## 
## 95% confidence set:
##                                          K  AICc Delta_AICc AICcWt
## reproduction~skew                        3 -4.84       0.00   0.29
## reproduction~dfrange                     3 -3.29       1.54   0.13
## reproduction~modindx + meanSTsp$skew     4 -2.84       2.00   0.11
## reproduction~modindx                     3 -2.63       2.21   0.10
## reproduction~modindx + meanSTsp$sp.ent   4 -2.04       2.79   0.07
## reproduction~duration + meanSTsp$skew    4 -1.80       3.04   0.06
## reproduction~sp.ent                      3 -1.77       3.07   0.06
## reproduction~duration                    3 -1.22       3.62   0.05
## reproduction~meandom                     3 -1.01       3.82   0.04
## reproduction~modindx + meanSTsp$dfrange  4 -0.49       4.34   0.03
## reproduction~duration + meanSTsp$dfrange 4  0.82       5.65   0.02
## 
## Model probabilities sum to 0.96
## 
## Multimodel inference on "meanSTsp$modindx" based on AICc
## 
## AICc table used to obtain model-averaged estimate:
## 
##                                         K  AICc Delta_AICc AICcWt Estimate
## reproduction~modindx                    3 -2.63       0.21   0.31    -2.33
## reproduction~modindx + meanSTsp$skew    4 -2.84       0.00   0.35    -2.35
## reproduction~modindx + meanSTsp$sp.ent  4 -2.04       0.80   0.23    -4.06
## reproduction~modindx + meanSTsp$dfrange 4 -0.49       2.35   0.11    -2.06
##                                           SE
## reproduction~modindx                    1.90
## reproduction~modindx + meanSTsp$skew    1.67
## reproduction~modindx + meanSTsp$sp.ent  1.97
## reproduction~modindx + meanSTsp$dfrange 1.84
## 
## Model-averaged estimate: -2.71 
## Unconditional SE: 1.98 
## 95% Unconditional confidence interval: -6.6, 1.18
## 
## Multimodel inference on "meanSTsp$duration" based on AICc
## 
## AICc table used to obtain model-averaged estimate:
## 
##                                          K  AICc Delta_AICc AICcWt
## reproduction~duration                    3 -1.22       0.58   0.37
## reproduction~duration + meanSTsp$skew    4 -1.80       0.00   0.50
## reproduction~duration + meanSTsp$dfrange 4  0.82       2.61   0.13
##                                          Estimate   SE
## reproduction~duration                        1.69 3.67
## reproduction~duration + meanSTsp$skew        3.35 3.28
## reproduction~duration + meanSTsp$dfrange     1.46 3.53
## 
## Model-averaged estimate: 2.49 
## Unconditional SE: 3.57 
## 95% Unconditional confidence interval: -4.51, 9.48
## 
## Multimodel inference on "meanSTsp$skew" based on AICc
## 
## AICc table used to obtain model-averaged estimate:
## 
##                                       K  AICc Delta_AICc AICcWt Estimate
## reproduction~skew                     3 -4.84       0.00   0.63    -0.12
## reproduction~duration + meanSTsp$skew 4 -1.80       3.04   0.14    -0.14
## reproduction~modindx + meanSTsp$skew  4 -2.84       2.00   0.23    -0.12
##                                         SE
## reproduction~skew                     0.06
## reproduction~duration + meanSTsp$skew 0.06
## reproduction~modindx + meanSTsp$skew  0.06
## 
## Model-averaged estimate: -0.12 
## Unconditional SE: 0.06 
## 95% Unconditional confidence interval: -0.25, 0
## 
## Multimodel inference on "meanSTsp$sp.ent" based on AICc
## 
## AICc table used to obtain model-averaged estimate:
## 
##                                        K  AICc Delta_AICc AICcWt Estimate
## reproduction~sp.ent                    3 -1.77       0.27   0.47     1.13
## reproduction~modindx + meanSTsp$sp.ent 4 -2.04       0.00   0.53     2.48
##                                          SE
## reproduction~sp.ent                    1.35
## reproduction~modindx + meanSTsp$sp.ent 1.36
## 
## Model-averaged estimate: 1.85 
## Unconditional SE: 1.51 
## 95% Unconditional confidence interval: -1.11, 4.82
## 
## Multimodel inference on "meanSTsp$meandom" based on AICc
## 
## AICc table used to obtain model-averaged estimate:
## 
##                      K  AICc Delta_AICc AICcWt Estimate   SE
## reproduction~meandom 3 -1.01          0      1    -0.01 0.07
## 
## Model-averaged estimate: -0.01 
## Unconditional SE: 0.07 
## 95% Unconditional confidence interval: -0.14, 0.12
## 
## Multimodel inference on "meanSTsp$dfrange" based on AICc
## 
## AICc table used to obtain model-averaged estimate:
## 
##                                          K  AICc Delta_AICc AICcWt
## reproduction~dfrange                     3 -3.29       0.00   0.73
## reproduction~duration + meanSTsp$dfrange 4  0.82       4.11   0.09
## reproduction~modindx + meanSTsp$dfrange  4 -0.49       2.80   0.18
##                                          Estimate   SE
## reproduction~dfrange                         0.02 0.02
## reproduction~duration + meanSTsp$dfrange     0.02 0.02
## reproduction~modindx + meanSTsp$dfrange      0.02 0.02
## 
## Model-averaged estimate: 0.02 
## Unconditional SE: 0.02 
## 95% Unconditional confidence interval: -0.01, 0.06

Song type fitness vs morphology

## DEFINEDNAME: 21 00 00 01 0b 00 00 00 01 00 00 00 00 00 00 0d 3b 00 00 00 00 82 01 00 00 e3 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 01 00 00 00 00 00 00 0d 3b 00 00 00 00 82 01 00 00 e3 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 01 00 00 00 00 00 00 0d 3b 00 00 00 00 82 01 00 00 e3 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 01 00 00 00 00 00 00 0d 3b 00 00 00 00 82 01 00 00 e3 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 01 00 00 00 00 00 00 0d 3b 00 00 00 00 82 01 00 00 e3 00
## [1] 57
## [1] 54
## Importance of components:
##                           PC1     PC2     PC3     PC4
## Standard deviation     0.0497 0.04035 0.03906 0.02126
## Proportion of Variance 0.4065 0.26802 0.25112 0.07438
## Cumulative Proportion  0.4065 0.67450 0.92562 1.00000
## [1] "test on survival"
## 
## Call:
## lm(formula = surv ~ bodysize/song.type, data = STmorph)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4160 -1.0569  0.4083  0.9212  0.9850 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           6.0859     0.1734  35.090  < 2e-16 ***
## bodysize             14.8697    16.7889   0.886  0.38219    
## bodysize:song.typeH -14.8508    20.8650  -0.712  0.48162    
## bodysize:song.typeL -15.8916    17.6632  -0.900  0.37480    
## bodysize:song.typeM 105.2546    35.2028   2.990  0.00524 ** 
## bodysize:song.typeN 235.8280    54.7778   4.305  0.00014 ***
## bodysize:song.typeO -11.7688    17.3139  -0.680  0.50142    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.051 on 33 degrees of freedom
## Multiple R-squared:  0.5309, Adjusted R-squared:  0.4456 
## F-statistic: 6.225 on 6 and 33 DF,  p-value: 0.0001899
## 
## Call:
## lm(formula = surv ~ bodysize2/song.type, data = STmorph)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.43905 -0.97070  0.06231  0.64267  1.66417 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             5.978      0.174  34.351  < 2e-16 ***
## bodysize2              12.546      8.492   1.477 0.149065    
## bodysize2:song.typeH   -2.773     13.612  -0.204 0.839823    
## bodysize2:song.typeL    1.522     10.902   0.140 0.889851    
## bodysize2:song.typeM  -87.646     20.389  -4.299 0.000143 ***
## bodysize2:song.typeN -293.655     55.307  -5.310  7.4e-06 ***
## bodysize2:song.typeO  -12.854     13.096  -0.981 0.333497    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9448 on 33 degrees of freedom
## Multiple R-squared:  0.6212, Adjusted R-squared:  0.5524 
## F-statistic: 9.021 on 6 and 33 DF,  p-value: 7.392e-06
## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## [1] "test on reproduction"
## 
## Call:
## lm(formula = rep ~ bodysize/song.type, data = STmorph)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.18359 -0.08661  0.04242  0.09570  0.10233 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0.38852    0.01861  20.879  < 2e-16 ***
## bodysize             1.31357    1.80134   0.729  0.47101    
## bodysize:song.typeH -1.31038    2.23868  -0.585  0.56230    
## bodysize:song.typeL -1.41973    1.89516  -0.749  0.45908    
## bodysize:song.typeM  7.50135    3.77704   1.986  0.05539 .  
## bodysize:song.typeN 17.20581    5.87733   2.927  0.00615 ** 
## bodysize:song.typeO -1.05946    1.85768  -0.570  0.57233    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1128 on 33 degrees of freedom
## Multiple R-squared:  0.3504, Adjusted R-squared:  0.2323 
## F-statistic: 2.967 on 6 and 33 DF,  p-value: 0.01985
## 
## Call:
## lm(formula = rep ~ bodysize2/song.type, data = STmorph)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.255311 -0.078881  0.006391  0.065914  0.170681 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            0.37869    0.01848  20.493  < 2e-16 ***
## bodysize2              1.10419    0.90173   1.225 0.229428    
## bodysize2:song.typeH   0.62976    1.44528   0.436 0.665863    
## bodysize2:song.typeL   0.33865    1.15760   0.293 0.771704    
## bodysize2:song.typeM  -6.57864    2.16485  -3.039 0.004621 ** 
## bodysize2:song.typeN -21.76391    5.87249  -3.706 0.000768 ***
## bodysize2:song.typeO  -1.12906    1.39056  -0.812 0.422641    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1003 on 33 degrees of freedom
## Multiple R-squared:  0.4864, Adjusted R-squared:  0.393 
## F-statistic: 5.208 on 6 and 33 DF,  p-value: 0.0007264

Relationship to distance between males

##   year     mantel.R     p
## 1 2011  0.031302148 0.377
## 2 2012 -0.008977903 0.476
## 3 2013  0.306437804 0.025
## 4 2014  0.195055245 0.087
## 5 2015  0.405330250 0.007
## 6 2016  0.452840307 0.100