Synopsis

This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database.

Introduction

We need to investigate Storm Data as below:

1.Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health?

2.Across the United States, which types of events have the greatest economic consequences?

Set up the R environment

Load ggplot

library(ggplot2)

Download data from URL

if(!file.exists("StormData.csv.bz2")){
+ Original_Data_URL <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
+ download.file(Original_Data_URL,destfile="StormData.csv.bz2")}

Read the CSV file from directory

Storm<-read.csv("StormData.csv.bz2", header=TRUE, sep=",")
str(Storm)
## 'data.frame':    902297 obs. of  37 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
##  $ BGN_TIME  : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
##  $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
##  $ STATE     : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ EVTYPE    : Factor w/ 985 levels "   HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : Factor w/ 35 levels "","  N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_DATE  : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_TIME  : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ WFO       : Factor w/ 542 levels ""," CI","$AC",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ ZONENAMES : Factor w/ 25112 levels "","                                                                                                                               "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : Factor w/ 436781 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...

Which types of events are most harmful with population health?

Harm<- Storm[,c("EVTYPE","FATALITIES","INJURIES")]
SumHarmful<-aggregate(Harm$FATALITIES+Harm$INJURIES, by=list(Harm$EVTYPE),FUN=sum)
names(SumHarmful)<- c("EVTYPE","TOTAL_EVENTS")
TopHarmful<-head(SumHarmful[order(-SumHarmful$TOTAL_EVENTS),],10)
TopHarmful
##                EVTYPE TOTAL_EVENTS
## 834           TORNADO        96979
## 130    EXCESSIVE HEAT         8428
## 856         TSTM WIND         7461
## 170             FLOOD         7259
## 464         LIGHTNING         6046
## 275              HEAT         3037
## 153       FLASH FLOOD         2755
## 427         ICE STORM         2064
## 760 THUNDERSTORM WIND         1621
## 972      WINTER STORM         1527

Plot the Histogram

barplot(TopHarmful$TOTAL_EVENTS,main= "Which event caused the most harmful with respect to population health",xlab="Total No. of Events", names.arg=TopHarmful$EVTYPE)

“Result: TOrnado is most harmful to population health”"

Which types of events have the greatest economic consequences?

ECO_CONS<-Storm[,c("EVTYPE","PROPDMG","CROPDMG")]
Sum_ECO_CONS <- aggregate(ECO_CONS$PROPDMG + ECO_CONS$CROPDMG,by=list(Harm$EVTYPE),FUN=sum)
names(Sum_ECO_CONS) <- c("EVTYPE","TOTAL_ECO_CONS")
Top_ECO_CONS <- head(Sum_ECO_CONS[order(-Sum_ECO_CONS$TOTAL_ECO_CONS),],5)
Top_ECO_CONS
##          EVTYPE TOTAL_ECO_CONS
## 834     TORNADO        3312277
## 153 FLASH FLOOD        1599325
## 856   TSTM WIND        1445168
## 244        HAIL        1268290
## 170       FLOOD        1067976

“Result: Tornado have greatest economic consequences”"