Method-1

## http://stats.stackexchange.com/questions/88409/which-test-should-be-used-to-compare-two-mean-differences
setwd("/Users/subasishdas1/Dropbox/---- TRB_2017 ----/Difference in Differences")
aa1 <- read.csv("aa1.csv") 
attach(aa1)
## aa1$Before1 <- scale(Before,scale=F)
## aa1[c(4,2,3)]
## summary(lm(After~Before1*Condition,aa1))
summary(lm(After~scale(Before,scale=F)*Condition,aa1))
## 
## Call:
## lm(formula = After ~ scale(Before, scale = F) * Condition, data = aa1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.073 -18.659  -0.847  11.915  45.177 
## 
## Coefficients:
##                                                    Estimate Std. Error
## (Intercept)                                       117.75391    7.01854
## scale(Before, scale = F)                            1.23430    0.07369
## ConditionTreatment Sites                          -58.16038    9.92878
## scale(Before, scale = F):ConditionTreatment Sites  -0.84794    0.10516
##                                                   t value Pr(>|t|)    
## (Intercept)                                        16.778 1.15e-10 ***
## scale(Before, scale = F)                           16.750 1.17e-10 ***
## ConditionTreatment Sites                           -5.858 4.16e-05 ***
## scale(Before, scale = F):ConditionTreatment Sites  -8.063 1.25e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20.7 on 14 degrees of freedom
## Multiple R-squared:  0.9576, Adjusted R-squared:  0.9486 
## F-statistic: 105.5 on 3 and 14 DF,  p-value: 7.549e-10

Method-2

## http://www.princeton.edu/~otorres/DID101R.pdf
## Same Data; melted 
aa2 <- read.csv("aa2.csv") 
aa2$did = aa2$BA1 * aa2$Condition1
aa2[c(1, 4, 5, 6)]
##    Count BA1 Condition1 did
## 1     20   0          0   0
## 2     57   0          0   0
## 3      8   0          0   0
## 4     57   0          0   0
## 5    161   0          0   0
## 6    319   0          0   0
## 7     14   0          0   0
## 8     45   0          0   0
## 9     81   0          0   0
## 10    21   0          1   0
## 11   118   0          1   0
## 12    39   0          1   0
## 13   118   0          1   0
## 14   126   0          1   0
## 15   358   0          1   0
## 16    65   0          1   0
## 17   116   0          1   0
## 18   115   0          1   0
## 19    32   1          0   0
## 20    42   1          0   0
## 21     6   1          0   0
## 22    42   1          0   0
## 23   172   1          0   0
## 24   398   1          0   0
## 25    12   1          0   0
## 26    75   1          0   0
## 27    87   1          0   0
## 28     9   1          1   1
## 29    47   1          1   1
## 30    27   1          1   1
## 31    47   1          1   1
## 32   114   1          1   1
## 33   148   1          1   1
## 34    51   1          1   1
## 35    75   1          1   1
## 36    79   1          1   1
didreg = lm(Count ~ BA1 + Condition1 + did, data = aa2)
summary(didreg)
## 
## Call:
## lm(formula = Count ~ BA1 + Condition1 + did, data = aa2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -98.56 -55.25 -19.33   7.00 301.78 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)    84.67      31.87   2.656   0.0122 *
## BA1            11.56      45.08   0.256   0.7993  
## Condition1     34.89      45.08   0.774   0.4446  
## did           -64.78      63.75  -1.016   0.3172  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 95.62 on 32 degrees of freedom
## Multiple R-squared:  0.0438, Adjusted R-squared:  -0.04584 
## F-statistic: 0.4886 on 3 and 32 DF,  p-value: 0.6926
didreg = lm(Count ~ BA1*Condition1, data = aa2)
summary(didreg)
## 
## Call:
## lm(formula = Count ~ BA1 * Condition1, data = aa2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -98.56 -55.25 -19.33   7.00 301.78 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)  
## (Intercept)       84.67      31.87   2.656   0.0122 *
## BA1               11.56      45.08   0.256   0.7993  
## Condition1        34.89      45.08   0.774   0.4446  
## BA1:Condition1   -64.78      63.75  -1.016   0.3172  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 95.62 on 32 degrees of freedom
## Multiple R-squared:  0.0438, Adjusted R-squared:  -0.04584 
## F-statistic: 0.4886 on 3 and 32 DF,  p-value: 0.6926