Introducción

Lo primero se procede a la carga de paquetes que puedan ser necesarios: * foreign para poder leer los ficheros de SPSS * lavaan para construir modelos SEM

## Warning: replacing previous import 'lme4::sigma' by 'stats::sigma' when
## loading 'pbkrtest'

Carga de datos

Se procede a leer los resultados de las encuestas a un data frame llamado ddd y cuyo resumen se muestra a continuación, previa eliminación de los registros que contengan datos NA:

setwd('/home/jb/git/Entrepreneur/')
# ddd = read.spss(file="Emprendimiento2016.sav",to.data.frame=TRUE)
# save(ddd,file="Emprendimiento2016.RData")
load(file="Emprendimiento2016.RData")
# summary(ddd)
jdx=apply(is.na(ddd),1,sum) == 0
ddna=ddd[jdx,]
colnames(ddna)= iconv(colnames(ddna),'utf-8','ascii',sub='')
summary(ddna)
##      CODIGO            UNI            PAIS          EDAD      
##  Min.   : 11002   UPM    :412   España  :412   Min.   :19.00  
##  1st Qu.: 21059   MILAN  :245   Italia  :727   1st Qu.:22.00  
##  Median : 41075   TUB    :213   México  :200   Median :23.00  
##  Mean   : 42867   PARMA  :202   Suecia  :221   Mean   :23.61  
##  3rd Qu.: 63016   MEXICO :200   Alemania:213   3rd Qu.:25.00  
##  Max.   :150452   POLIBA :140                  Max.   :52.00  
##                   (Other):361                                 
##     GENERO                 CARRERA       CURSO          PASNAC     
##  Hombre:1173   Organización    :456   último:1773   Min.   :1.000  
##  Mujer : 600   Industriales    :587                 1st Qu.:2.000  
##                Química         :330                 Median :2.000  
##                Ing. Civil      :400                 Mean   :2.617  
##                Ing. Informática:  0                 3rd Qu.:3.000  
##                                                     Max.   :6.000  
##                                                                    
##   PASNACPADRE     PASNACMADRE        CLASESOCIAL          ClaseSocial2
##  Min.   :1.000   Min.   :1.000   Baja      : 61   Baja-MedioBaja:797  
##  1st Qu.:2.000   1st Qu.:2.000   Media-Baja:736   Alta-MedioAlta:976  
##  Median :2.000   Median :2.000   Media-Alta:929                       
##  Mean   :2.605   Mean   :2.608   Alta      : 47                       
##  3rd Qu.:3.000   3rd Qu.:3.000                                        
##  Max.   :6.000   Max.   :6.000                                        
##                                                                       
##          ESTPADRE           ESTMADRE       OCUPACIONPADRE
##  Sin estudios:139   Sin estudios:154   Funcionario:405   
##  Secundaria  :480   Secundaria  :547   Empleado   :633   
##  FP          :395   FP          :400   Empresario :453   
##  Universidad :759   Universidad :672   Desempleado: 63   
##                                        Otro       :219   
##                                                          
##                                                          
##      OCUPACIONMADRE   ENTORNONEG    V2.1Individualismo       V2.2Feminidad
##  Funcionario:438    Min.   :0.000   Min.   :1.000      Muy Masculino:121  
##  Empleado   :537    1st Qu.:0.000   1st Qu.:3.000      Masculino    :225  
##  Empresario :210    Median :1.000   Median :4.000      Medio        :520  
##  Desempleado:298    Mean   :0.727   Mean   :3.813      Femenino     :627  
##  Otro       :290    3rd Qu.:1.000   3rd Qu.:5.000      Muy femenino :280  
##                     Max.   :2.000   Max.   :6.000                         
##                                                                           
##     V2.2MasculinidadINV       V2.3NoAversin      V2.3.AversinINV
##  Muy femenino :280      Alta aversión:331   Baja aversión: 97   
##  Femenino     :627      Aversión     :542   Poca aversión:301   
##  Medio        :520      Medio        :502   Medio        :502   
##  Masculino    :225      Poca aversión:301   Aversión     :542   
##  Muy Masculino:121      Baja aversión: 97   Alta aversión:331   
##                                                                 
##                                                                 
##            V2.4Colectivismo        V2.4IndividualismoINV
##  Muy Individualista: 83     Muy Colectivista  :270      
##  Individualista    :197     Colectivista      :693      
##  Medio             :530     Medio             :530      
##  Colectivista      :693     Individualista    :197      
##  Muy Colectivista  :270     Muy Individualista: 83      
##                                                         
##                                                         
##         V2.5Aversin       V2.6Masculinidad        V2.7Aversin 
##  Baja aversión:110   Muy femenino : 29     Baja aversión: 27  
##  Poca aversión:301   Femenino     : 98     Poca aversión:120  
##  Medio        :473   Medio        :389     Medio        :413  
##  Aversión     :493   Masculino    :726     Aversión     :741  
##  Alta aversión:396   Muy Masculino:531     Alta aversión:472  
##                                                               
##                                                               
##           V2.8Individualismo V2.9Innovacin      V2.10IT     
##  Muy Colectivista  : 29      Min.   :1.000   Min.   :1.000  
##  Colectivista      :127      1st Qu.:2.000   1st Qu.:1.000  
##  Medio             :386      Median :3.000   Median :2.000  
##  Individualista    :635      Mean   :3.092   Mean   :2.389  
##  Muy Individualista:596      3rd Qu.:4.000   3rd Qu.:3.000  
##                              Max.   :5.000   Max.   :5.000  
##                                                             
##  V3.1ACTFuturoAtractivo V3.2ACTOpciones    MediaACT      V3.3CONTFcil  
##  Min.   :1.000          Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000          1st Qu.:3.000   1st Qu.:3.500   1st Qu.:3.000  
##  Median :5.000          Median :4.000   Median :4.500   Median :4.000  
##  Mean   :4.917          Mean   :4.245   Mean   :4.581   Mean   :3.669  
##  3rd Qu.:6.000          3rd Qu.:5.000   3rd Qu.:6.000   3rd Qu.:5.000  
##  Max.   :7.000          Max.   :7.000   Max.   :7.000   Max.   :7.000  
##                                                                        
##  V3.4CONTPuedo     MediaCONT      V3.5IEListo      V3.6IEMeta   
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:2.500   1st Qu.:2.000   1st Qu.:2.000  
##  Median :4.000   Median :3.500   Median :3.000   Median :4.000  
##  Mean   :3.812   Mean   :3.741   Mean   :3.467   Mean   :3.699  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##                                                                 
##  V3.7IEHarTodo   V3.8IEConvencido V3.9IEPensarSerio V3.10IEFirmeIntencin
##  Min.   :1.000   Min.   :1.000    Min.   :1.000     Min.   :1.000       
##  1st Qu.:2.000   1st Qu.:2.000    1st Qu.:2.000     1st Qu.:2.000       
##  Median :3.000   Median :3.000    Median :3.000     Median :3.000       
##  Mean   :3.671   Mean   :3.635    Mean   :3.676     Mean   :3.633       
##  3rd Qu.:5.000   3rd Qu.:5.000    3rd Qu.:5.000     3rd Qu.:5.000       
##  Max.   :7.000   Max.   :7.000    Max.   :7.000     Max.   :7.000       
##                                                                         
##     MediaIE      V3.11NSFamilia  V3.12NSAmigos   V3.12NSCompaeros
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   
##  1st Qu.:2.167   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000   
##  Median :3.333   Median :6.000   Median :6.000   Median :5.000   
##  Mean   :3.630   Mean   :5.506   Mean   :5.415   Mean   :5.124   
##  3rd Qu.:5.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:6.000   
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000   
##                                                                  
##  V3.14NSSociedad    MediaNS       V4.1FINPROP       V4.2ADM     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.250   1st Qu.:2.000   1st Qu.:1.000  
##  Median :5.000   Median :5.250   Median :2.000   Median :2.000  
##  Mean   :4.818   Mean   :5.216   Mean   :2.399   Mean   :2.223  
##  3rd Qu.:6.000   3rd Qu.:6.250   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :7.000   Max.   :7.000   Max.   :5.000   Max.   :5.000  
##                                                                 
##     V4.3JUV      V4.4CREDIT      V4.5FINPUB       V4.6JUV     
##  Min.   :1.0   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.0   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :3.0   Median :2.000   Median :2.000   Median :3.000  
##  Mean   :2.9   Mean   :2.403   Mean   :2.342   Mean   :3.094  
##  3rd Qu.:4.0   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:4.000  
##  Max.   :5.0   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##                                                               
##     V4.7ADM       V4.8FINPROP       V4.9ADM         V4.10JUV    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:1.000   1st Qu.:2.000  
##  Median :2.000   Median :2.000   Median :2.000   Median :2.000  
##  Mean   :2.346   Mean   :2.404   Mean   :2.136   Mean   :2.508  
##  3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##                                                                 
##     V4.11ADM        V4.12EDU        V4.13JUV        V4.14ADM    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :2.000   Median :3.000   Median :3.000   Median :2.000  
##  Mean   :2.043   Mean   :2.755   Mean   :2.633   Mean   :2.459  
##  3rd Qu.:3.000   3rd Qu.:4.000   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
## 
ddf = ddna
for (i in (1:length(colnames(ddf)))[-c(1,4)]) {
  ddf[,i]=as.ordered(ddf[,i])
}

Análisis Factorial Confirmatorio. Modelo de Ajzen

Se procede a crear en modelo de Ajzen y a un análisis confirmatorio de datos. Partimos de las variables como factores

Datos con rango numérico

#
AJZEN.model = ' AtB =~ V3.1ACTFuturoAtractivo + V3.2ACTOpciones
                SN  =~ V3.11NSFamilia + V3.12NSAmigos + V3.12NSCompaeros + V3.14NSSociedad
                PBC =~ V3.3CONTFcil + V3.4CONTPuedo '
fitn = lavaan::cfa(AJZEN.model, data =ddna)
summary(fitn,fit.measures=TRUE)
## lavaan (0.5-20) converged normally after  44 iterations
## 
##   Number of observations                          1773
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic              407.123
##   Degrees of freedom                                17
##   P-value (Chi-square)                           0.000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             7856.530
##   Degrees of freedom                                28
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.950
##   Tucker-Lewis Index (TLI)                       0.918
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -22955.627
##   Loglikelihood unrestricted model (H1)     -22752.065
## 
##   Number of free parameters                         19
##   Akaike (AIC)                               45949.253
##   Bayesian (BIC)                             46053.381
##   Sample-size adjusted Bayesian (BIC)        45993.020
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.114
##   90 Percent Confidence Interval          0.104  0.123
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.053
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  Z-value  P(>|z|)
##   AtB =~                                              
##     V3.1ACTFtrAtrc    1.000                           
##     V3.2ACTOpcions    1.126    0.030   36.986    0.000
##   SN =~                                               
##     V3.11NSFamilia    1.000                           
##     V3.12NSAmigos     1.232    0.037   33.598    0.000
##     V3.12NSCompars    1.199    0.037   32.502    0.000
##     V3.14NSSociedd    1.018    0.039   26.227    0.000
##   PBC =~                                              
##     V3.3CONTFcil      1.000                           
##     V3.4CONTPuedo     0.913    0.032   28.546    0.000
## 
## Covariances:
##                    Estimate  Std.Err  Z-value  P(>|z|)
##   AtB ~~                                              
##     SN                0.515    0.045   11.516    0.000
##     PBC               1.236    0.066   18.714    0.000
##   SN ~~                                               
##     PBC               0.464    0.045   10.357    0.000
## 
## Variances:
##                    Estimate  Std.Err  Z-value  P(>|z|)
##     V3.1ACTFtrAtrc    0.677    0.048   14.059    0.000
##     V3.2ACTOpcions    0.326    0.055    5.937    0.000
##     V3.11NSFamilia    1.226    0.047   26.280    0.000
##     V3.12NSAmigos     0.418    0.030   13.742    0.000
##     V3.12NSCompars    0.678    0.035   19.480    0.000
##     V3.14NSSociedd    1.518    0.056   26.881    0.000
##     V3.3CONTFcil      0.484    0.059    8.162    0.000
##     V3.4CONTPuedo     0.948    0.057   16.562    0.000
##     AtB               1.928    0.095   20.395    0.000
##     SN                1.193    0.073   16.257    0.000
##     PBC               1.963    0.099   19.896    0.000
semPaths(fitn)

Datos con rango categórico endógeno

#
ddfr = ddf[c("UNI","V3.1ACTFuturoAtractivo","V3.2ACTOpciones",
             "V3.11NSFamilia","V3.12NSAmigos","V3.12NSCompaeros",
             "V3.14NSSociedad","V3.3CONTFcil","V3.4CONTPuedo")]
fitc = lavaan::cfa(AJZEN.model, data =ddfr)
summary(fitc,fit.measures=TRUE)
## lavaan (0.5-20) converged normally after  26 iterations
## 
##   Number of observations                          1773
## 
##   Estimator                                       DWLS      Robust
##   Minimum Function Test Statistic              361.422     636.168
##   Degrees of freedom                                17          17
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  0.573
##   Shift parameter                                            5.492
##     for simple second-order correction (Mplus variant)
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic            56768.670   28237.892
##   Degrees of freedom                                28          28
##   P-value                                        0.000       0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.994       0.978
##   Tucker-Lewis Index (TLI)                       0.990       0.964
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.107       0.143
##   90 Percent Confidence Interval          0.097  0.117       0.134  0.153
##   P-value RMSEA <= 0.05                          0.000       0.000
## 
## Weighted Root Mean Square Residual:
## 
##   WRMR                                           2.181       2.181
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                           Robust.sem
## 
## Latent Variables:
##                    Estimate  Std.Err  Z-value  P(>|z|)
##   AtB =~                                              
##     V3.1ACTFtrAtrc    1.000                           
##     V3.2ACTOpcions    1.033    0.019   54.991    0.000
##   SN =~                                               
##     V3.11NSFamilia    1.000                           
##     V3.12NSAmigos     1.170    0.015   77.383    0.000
##     V3.12NSCompars    1.134    0.013   84.656    0.000
##     V3.14NSSociedd    0.927    0.016   56.941    0.000
##   PBC =~                                              
##     V3.3CONTFcil      1.000                           
##     V3.4CONTPuedo     0.911    0.023   40.393    0.000
## 
## Covariances:
##                    Estimate  Std.Err  Z-value  P(>|z|)
##   AtB ~~                                              
##     SN                0.276    0.016   17.449    0.000
##     PBC               0.528    0.016   33.262    0.000
##   SN ~~                                               
##     PBC               0.239    0.017   14.387    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  Z-value  P(>|z|)
##     V3.1ACTFtrAtrc    0.000                           
##     V3.2ACTOpcions    0.000                           
##     V3.11NSFamilia    0.000                           
##     V3.12NSAmigos     0.000                           
##     V3.12NSCompars    0.000                           
##     V3.14NSSociedd    0.000                           
##     V3.3CONTFcil      0.000                           
##     V3.4CONTPuedo     0.000                           
##     AtB               0.000                           
##     SN                0.000                           
##     PBC               0.000                           
## 
## Thresholds:
##                    Estimate  Std.Err  Z-value  P(>|z|)
##     V3.1ACTFtrAt|1   -1.866    0.059  -31.694    0.000
##     V3.1ACTFtrAt|2   -1.312    0.041  -31.813    0.000
##     V3.1ACTFtrAt|3   -0.876    0.034  -25.514    0.000
##     V3.1ACTFtrAt|4   -0.344    0.030  -11.302    0.000
##     V3.1ACTFtrAt|5    0.236    0.030    7.852    0.000
##     V3.1ACTFtrAt|6    0.869    0.034   25.385    0.000
##     V3.2ACTOpcns|1   -1.611    0.049  -32.816    0.000
##     V3.2ACTOpcns|2   -0.931    0.035  -26.618    0.000
##     V3.2ACTOpcns|3   -0.426    0.031  -13.844    0.000
##     V3.2ACTOpcns|4    0.091    0.030    3.062    0.002
##     V3.2ACTOpcns|5    0.686    0.032   21.121    0.000
##     V3.2ACTOpcns|6    1.283    0.041   31.567    0.000
##     V3.11NSFaml|t1   -2.136    0.074  -28.910    0.000
##     V3.11NSFaml|t2   -1.654    0.051  -32.747    0.000
##     V3.11NSFaml|t3   -1.141    0.038  -30.022    0.000
##     V3.11NSFaml|t4   -0.664    0.032  -20.574    0.000
##     V3.11NSFaml|t5   -0.219    0.030   -7.283    0.000
##     V3.11NSFaml|t6    0.345    0.030   11.350    0.000
##     V3.12NSAmgs|t1   -2.096    0.071  -29.404    0.000
##     V3.12NSAmgs|t2   -1.677    0.051  -32.690    0.000
##     V3.12NSAmgs|t3   -1.197    0.039  -30.707    0.000
##     V3.12NSAmgs|t4   -0.671    0.032  -20.757    0.000
##     V3.12NSAmgs|t5   -0.121    0.030   -4.059    0.000
##     V3.12NSAmgs|t6    0.529    0.031   16.884    0.000
##     V3.12NSCmprs|1   -1.973    0.064  -30.760    0.000
##     V3.12NSCmprs|2   -1.557    0.047  -32.830    0.000
##     V3.12NSCmprs|3   -1.024    0.036  -28.290    0.000
##     V3.12NSCmprs|4   -0.440    0.031  -14.267    0.000
##     V3.12NSCmprs|5    0.100    0.030    3.347    0.001
##     V3.12NSCmprs|6    0.737    0.033   22.387    0.000
##     V3.14NSScdd|t1   -1.725    0.053  -32.524    0.000
##     V3.14NSScdd|t2   -1.305    0.041  -31.760    0.000
##     V3.14NSScdd|t3   -0.855    0.034  -25.083    0.000
##     V3.14NSScdd|t4   -0.170    0.030   -5.672    0.000
##     V3.14NSScdd|t5    0.299    0.030    9.886    0.000
##     V3.14NSScdd|t6    0.833    0.034   24.604    0.000
##     V3.3CONTFcl|t1   -1.393    0.043  -32.350    0.000
##     V3.3CONTFcl|t2   -0.675    0.032  -20.848    0.000
##     V3.3CONTFcl|t3   -0.049    0.030   -1.638    0.101
##     V3.3CONTFcl|t4    0.505    0.031   16.185    0.000
##     V3.3CONTFcl|t5    1.125    0.038   29.807    0.000
##     V3.3CONTFcl|t6    1.706    0.052   32.595    0.000
##     V3.4CONTPud|t1   -1.420    0.044  -32.483    0.000
##     V3.4CONTPud|t2   -0.735    0.033  -22.342    0.000
##     V3.4CONTPud|t3   -0.133    0.030   -4.439    0.000
##     V3.4CONTPud|t4    0.377    0.031   12.339    0.000
##     V3.4CONTPud|t5    0.955    0.035   27.075    0.000
##     V3.4CONTPud|t6    1.688    0.052   32.655    0.000
## 
## Variances:
##                    Estimate  Std.Err  Z-value  P(>|z|)
##     V3.1ACTFtrAtrc    0.181                           
##     V3.2ACTOpcions    0.126                           
##     V3.11NSFamilia    0.388                           
##     V3.12NSAmigos     0.162                           
##     V3.12NSCompars    0.213                           
##     V3.14NSSociedd    0.474                           
##     V3.3CONTFcil      0.185                           
##     V3.4CONTPuedo     0.323                           
##     AtB               0.819    0.017   48.280    0.000
##     SN                0.612    0.016   38.860    0.000
##     PBC               0.815    0.021   38.535    0.000
## 
## Scales y*:
##                    Estimate  Std.Err  Z-value  P(>|z|)
##     V3.1ACTFtrAtrc    1.000                           
##     V3.2ACTOpcions    1.000                           
##     V3.11NSFamilia    1.000                           
##     V3.12NSAmigos     1.000                           
##     V3.12NSCompars    1.000                           
##     V3.14NSSociedd    1.000                           
##     V3.3CONTFcil      1.000                           
##     V3.4CONTPuedo     1.000
semPaths(fitc)

Análisis Factorial Confirmatorio. Modelo de Ajzen por Universidades

Ahora procedemos a hacer un CFA separando el estudio por Universidades

Con datos numéricos

# fit2 = lavaan::cfa(AJZEN.model, data =ddna, group="UNI")
# summary(fit2,fit.measures=TRUE)
# semPaths(fit2)

Modelado del caso de Ajzen con Ecuaciones Estructurales

Se va a constuir ahora un modelo de interdependencia con hipótesis de regresión sobre EI

# 'PADCAJ','PADEMP','PADDES','PADOTR',,'MADCAJ','MADEMP','MADDES','MADOTR'
 ddold = ddna
 ddna[,"V2.8Individualismo"]= as.numeric(ddna[,"V2.8Individualismo"])
 ddna[,"V2.2MasculinidadINV"]= as.numeric(ddna[,"V2.2MasculinidadINV"])
 ddna[,"V2.6Masculinidad"]= as.numeric(ddna[,"V2.6Masculinidad"])
 ddna[,"V2.3.AversinINV"]= as.numeric(ddna[,"V2.3.AversinINV"])
 ddna[,"V2.5Aversin"]= as.numeric(ddna[,"V2.5Aversin"])
 ddna[,"V2.7Aversin"]= as.numeric(ddna[,"V2.7Aversin"])
 ddna$PADFUN = as.numeric(ddna$OCUPACIONPADRE == "Funcionario")
 ddna$PADCAJ = as.numeric(ddna$OCUPACIONPADRE == "Empleado")
 ddna$PADEMP = as.numeric(ddna$OCUPACIONPADRE == "Empresario")
 ddna$PADDES = as.numeric(ddna$OCUPACIONPADRE == "Desempleado")
 ddna$PADOTR = as.numeric(ddna$OCUPACIONPADRE == "Otro")
 ddna$MADFUN = as.numeric(ddna$OCUPACIONMADRE == "Funcionario")
 ddna$MADCAJ = as.numeric(ddna$OCUPACIONMADRE == "Empleado")
 ddna$MADEMP = as.numeric(ddna$OCUPACIONMADRE == "Empresario")
 ddna$MADDES = as.numeric(ddna$OCUPACIONMADRE == "Desempleado")
 ddna$MADOTR = as.numeric(ddna$OCUPACIONMADRE == "Otro")
 obs.variables2=c('V3.1ACTFuturoAtractivo', 'V3.2ACTOpciones',
                'V3.11NSFamilia', 'V3.12NSAmigos', 'V3.14NSSociedad',
                'V3.3CONTFcil', 'V3.4CONTPuedo', 'V3.6IEMeta', 'V3.8IEConvencido',
                'V3.10IEFirmeIntencin', 'V2.8Individualismo',
                'V2.2MasculinidadINV', 'V2.6Masculinidad', 'V2.1Individualismo',
                'V2.5Aversin','V2.7Aversin','PADFUN',
                'MADFUN')
#
mcv = round(cov(ddna[,obs.variables2]),1)

EI.AJZEN.model13 = '
                 # Variables Latentes
                CHI =~ V2.8Individualismo + V2.1Individualismo + PADFUN + MADFUN 
                CHM =~ V2.2MasculinidadINV + V2.6Masculinidad
                CRA =~ V2.5Aversin + V2.7Aversin + PADFUN + MADFUN 
                AtB =~ V3.1ACTFuturoAtractivo + V3.2ACTOpciones 
                SN  =~ V3.11NSFamilia + V3.12NSAmigos + V3.14NSSociedad
                PBC =~ V3.3CONTFcil + V3.4CONTPuedo 
                EI  =~ V3.6IEMeta + V3.8IEConvencido + V3.10IEFirmeIntencin
               # Regresión
                SN  ~ CHI + CRA + CHM 
                AtB ~ CHM + SN
                PBC ~ CHI + CHM + SN
                EI  ~ PBC + AtB
               # Correlación de Residuos
                CHI ~~ CHI 
                CHM ~~ CHM 
                CRA ~~ CRA
                AtB ~~ AtB 
                PBC ~~ PBC 
                SN  ~~ SN
                EI  ~~ 1 * EI
        '
fitm13 = lavaan::sem(EI.AJZEN.model13, data =ddna[,obs.variables2], std.lv=TRUE, 
                     sample.cov=mcv, estimator = "ML", start="simple", 
                     bootstrap=10000)
summary(fitm13,fit.measures=TRUE,rsquare=TRUE)
## lavaan (0.5-20) converged normally after 159 iterations
## 
##   Number of observations                          1773
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic             1130.607
##   Degrees of freedom                               120
##   P-value (Chi-square)                           0.000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic            13801.315
##   Degrees of freedom                               153
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.926
##   Tucker-Lewis Index (TLI)                       0.906
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -45243.361
##   Loglikelihood unrestricted model (H1)     -44678.058
## 
##   Number of free parameters                         51
##   Akaike (AIC)                               90588.722
##   Bayesian (BIC)                             90868.224
##   Sample-size adjusted Bayesian (BIC)        90706.201
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.069
##   90 Percent Confidence Interval          0.065  0.073
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.060
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  Z-value  P(>|z|)
##   CHI =~                                              
##     V2.8Individlsm   -0.292    0.030   -9.593    0.000
##     V2.1Individlsm   -0.692    0.046  -15.122    0.000
##     PADFUN            1.028    1.017    1.010    0.312
##     MADFUN            1.135    1.150    0.987    0.324
##   CHM =~                                              
##     V2.2MsclnddINV    0.163    0.029    5.587    0.000
##     V2.6Masculindd    0.181    0.025    7.283    0.000
##   CRA =~                                              
##     V2.5Aversin       0.124    0.037    3.362    0.001
##     V2.7Aversin       0.168    0.030    5.661    0.000
##     PADFUN            1.009    1.002    1.007    0.314
##     MADFUN            1.138    1.133    1.004    0.315
##   AtB =~                                              
##     V3.1ACTFtrAtrc    0.652    0.107    6.074    0.000
##     V3.2ACTOpcions    0.740    0.122    6.059    0.000
##   SN =~                                               
##     V3.11NSFamilia    1.002    0.073   13.800    0.000
##     V3.12NSAmigos     1.193    0.084   14.118    0.000
##     V3.14NSSociedd    0.859    0.066   13.075    0.000
##   PBC =~                                              
##     V3.3CONTFcil      0.941    0.060   15.762    0.000
##     V3.4CONTPuedo     0.906    0.057   15.795    0.000
##   EI =~                                               
##     V3.6IEMeta        0.953    0.024   39.904    0.000
##     V3.8IEConvencd    0.995    0.024   41.428    0.000
##     V3.10IEFrmIntn    1.031    0.025   40.847    0.000
## 
## Regressions:
##                    Estimate  Std.Err  Z-value  P(>|z|)
##   SN ~                                                
##     CHI               0.642    0.715    0.898    0.369
##     CRA               0.601    0.661    0.909    0.363
##     CHM               0.612    0.234    2.616    0.009
##   AtB ~                                               
##     CHM               1.958    0.458    4.274    0.000
##     SN               -0.174    0.220   -0.788    0.430
##   PBC ~                                               
##     CHI               0.108    0.130    0.830    0.406
##     CHM               1.148    0.214    5.372    0.000
##     SN               -0.060    0.125   -0.482    0.630
##   EI ~                                                
##     PBC               0.381    0.038    9.998    0.000
##     AtB               0.465    0.079    5.887    0.000
## 
## Covariances:
##                    Estimate  Std.Err  Z-value  P(>|z|)
##   CHI ~~                                              
##     CHM              -0.644    0.050  -12.838    0.000
##     CRA              -0.982    0.035  -28.216    0.000
##   CHM ~~                                              
##     CRA               0.601    0.070    8.594    0.000
## 
## Variances:
##                    Estimate  Std.Err  Z-value  P(>|z|)
##     CHI               1.000                           
##     CHM               1.000                           
##     CRA               1.000                           
##     AtB               1.000                           
##     PBC               1.000                           
##     SN                1.000                           
##     EI                1.000                           
##     V2.8Individlsm    0.897    0.032   27.777    0.000
##     V2.1Individlsm    0.497    0.059    8.410    0.000
##     PADFUN            0.139    0.013   10.436    0.000
##     MADFUN            0.140    0.017    8.357    0.000
##     V2.2MsclnddINV    1.194    0.040   29.608    0.000
##     V2.6Masculindd    0.848    0.029   29.475    0.000
##     V2.5Aversin       1.388    0.047   29.532    0.000
##     V2.7Aversin       0.857    0.030   29.008    0.000
##     V3.1ACTFtrAtrc    0.694    0.035   19.824    0.000
##     V3.2ACTOpcions    0.313    0.035    8.924    0.000
##     V3.11NSFamilia    1.089    0.053   20.414    0.000
##     V3.12NSAmigos     0.343    0.056    6.176    0.000
##     V3.14NSSociedd    1.776    0.067   26.586    0.000
##     V3.3CONTFcil      0.585    0.049   12.023    0.000
##     V3.4CONTPuedo     0.860    0.050   17.083    0.000
##     V3.6IEMeta        0.650    0.029   22.249    0.000
##     V3.8IEConvencd    0.454    0.025   17.933    0.000
##     V3.10IEFrmIntn    0.596    0.030   20.009    0.000
## 
## R-Square:
##                    Estimate
##     AtB               0.777
##     PBC               0.524
##     SN                0.246
##     EI                0.663
##     V2.8Individlsm    0.087
##     V2.1Individlsm    0.491
##     PADFUN            0.210
##     MADFUN            0.246
##     V2.2MsclnddINV    0.022
##     V2.6Masculindd    0.037
##     V2.5Aversin       0.011
##     V2.7Aversin       0.032
##     V3.1ACTFtrAtrc    0.734
##     V3.2ACTOpcions    0.887
##     V3.11NSFamilia    0.550
##     V3.12NSAmigos     0.846
##     V3.14NSSociedd    0.355
##     V3.3CONTFcil      0.761
##     V3.4CONTPuedo     0.667
##     V3.6IEMeta        0.806
##     V3.8IEConvencd    0.866
##     V3.10IEFrmIntn    0.841
semPaths(fitm13, what="par", ask=FALSE, layout="tree2",residuals=TRUE, style="OpenMx",
         sizeMan=8, edge.label.cex=0.8, thresholds = TRUE)

#