You are pretty awesome at using Excel and SPSS. So why would you want to learn R? The following piece of code will answer that question:

library(rvest)

# Read in the raw data.
htmlpage <- read_html("http://www.kdnuggets.com/2016/06/r-python-top-analytics-data-mining-data-science-software.html")

# Extract all tables.
tables <- html_nodes(htmlpage, "table")

# Select a particular table.
ranking <- html_table(tables, fill = TRUE)[3][[1]]

# Display the data in the selected table.
ranking
           Tool 2016% share % change % alone
1             R         49%    +4.5%    1.4%
2        Python       45.8%     +51%    0.1%
3           SQL       35.5%     +15%      0%
4         Excel       33.6%     +47%    0.2%
5    RapidMiner       32.6%    +3.5%   11.7%
6        Hadoop       22.1%     +20%      0%
7         Spark       21.6%     +91%    0.2%
8       Tableau       18.5%     +49%    0.2%
9         KNIME       18.0%     -10%    4.4%
10 scikit-learn       17.2%    +107%      0%
# Plot the data in rainbow colors.
barplot(height = as.numeric(sub("%","",ranking$'2016% share')),
        names.arg = ranking$Tool,
        ylim = c(0,50),
        main = "Ranking software for data-analyse",
        xlab = "Tool",  
        ylab = "% market share 2016",
        col = rainbow(10),
        las = 2)

These few lines of code show how powerful R is:

  1. It is very easy to read in unstructured data (eg. html) and structure it.
  2. Data can be easily visualized.
  3. The data shows that R is currently the #1 tool for data analysis. SPSS has not been included in this survey, but is outranked by R in other ones.

PS: This article has been written in R.

IycgLS0tCiMnIHRpdGxlOiAiV2h5IHVzZSBSIGlmIHlvdSBrbm93IEV4Y2VsIGFuZCBTUFNTIGFscmVhZHk/IgojJyBvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKIycgYXV0aG9yOiBOVUxMCiMnIGRhdGU6IE5VTEwKIycgLS0tCgojJyAgIVtdKGRpbGJlcnQuZ2lmKTxicj48YnI+CiMnIFlvdSBhcmUgcHJldHR5IGF3ZXNvbWUgYXQgdXNpbmcgRXhjZWwgYW5kIFNQU1MuCiMnIFNvIHdoeSB3b3VsZCB5b3Ugd2FudCB0byBsZWFybiBSPwojJyBUaGUgZm9sbG93aW5nIHBpZWNlIG9mIGNvZGUgd2lsbCBhbnN3ZXIgdGhhdCBxdWVzdGlvbjoKIycgCiMrIG1lc3NhZ2U9RkFMU0UKCmxpYnJhcnkocnZlc3QpCgojIFJlYWQgaW4gdGhlIHJhdyBkYXRhLgpodG1scGFnZSA8LSByZWFkX2h0bWwoImh0dHA6Ly93d3cua2RudWdnZXRzLmNvbS8yMDE2LzA2L3ItcHl0aG9uLXRvcC1hbmFseXRpY3MtZGF0YS1taW5pbmctZGF0YS1zY2llbmNlLXNvZnR3YXJlLmh0bWwiKQoKIyBFeHRyYWN0IGFsbCB0YWJsZXMuCnRhYmxlcyA8LSBodG1sX25vZGVzKGh0bWxwYWdlLCAidGFibGUiKQoKIyBTZWxlY3QgYSBwYXJ0aWN1bGFyIHRhYmxlLgpyYW5raW5nIDwtIGh0bWxfdGFibGUodGFibGVzLCBmaWxsID0gVFJVRSlbM11bWzFdXQoKIyBEaXNwbGF5IHRoZSBkYXRhIGluIHRoZSBzZWxlY3RlZCB0YWJsZS4KcmFua2luZwoKIyBQbG90IHRoZSBkYXRhIGluIHJhaW5ib3cgY29sb3JzLgpiYXJwbG90KGhlaWdodCA9IGFzLm51bWVyaWMoc3ViKCIlIiwiIixyYW5raW5nJCcyMDE2JSBzaGFyZScpKSwKICAgICAgICBuYW1lcy5hcmcgPSByYW5raW5nJFRvb2wsCiAgICAgICAgeWxpbSA9IGMoMCw1MCksCiAgICAgICAgbWFpbiA9ICJSYW5raW5nIHNvZnR3YXJlIGZvciBkYXRhLWFuYWx5c2UiLAogICAgICAgIHhsYWIgPSAiVG9vbCIsICAKICAgICAgICB5bGFiID0gIiUgbWFya2V0IHNoYXJlIDIwMTYiLAogICAgICAgIGNvbCA9IHJhaW5ib3coMTApLAogICAgICAgIGxhcyA9IDIpCgoKIycgVGhlc2UgZmV3IGxpbmVzIG9mIGNvZGUgc2hvdyBob3cgcG93ZXJmdWwgUiBpczoKIycgCiMnIDEuIEl0IGlzIHZlcnkgZWFzeSB0byByZWFkIGluIHVuc3RydWN0dXJlZCBkYXRhIChlZy4gaHRtbCkgYW5kIHN0cnVjdHVyZSBpdC4KIycgMi4gRGF0YSBjYW4gYmUgZWFzaWx5IHZpc3VhbGl6ZWQuCiMnIDMuIFRoZSBkYXRhIHNob3dzIHRoYXQgUiBpcyBjdXJyZW50bHkgdGhlICMxIHRvb2wgZm9yIGRhdGEgYW5hbHlzaXMuCiMnIFNQU1MgaGFzIG5vdCBiZWVuIGluY2x1ZGVkIGluIHRoaXMgc3VydmV5LCBidXQgaXMgb3V0cmFua2VkIGJ5IFIgaW4gb3RoZXIgb25lcy4KIycgCiMnICMjIyNQUzogVGhpcyBhcnRpY2xlIGhhcyBiZWVuIHdyaXR0ZW4gaW4gUi4K