Justin's Analysis

Data Munging

##  [1] "ID"                     "Condition"             
##  [3] "Site"                   "Coach"                 
##  [5] "Session"                "Morn_Aft"              
##  [7] "Day"                    "Age_month"             
##  [9] "Waist_Circumference_cm" "BMI"                   
## [11] "OrgSport"               "MVPA_ATHLETE_EV"       
## [13] "Min_MVPA_Ath_EV"        "VPA_ATHLETE_EV"        
## [15] "Min_VPA_Ath_EV"         "MPA_ATHLETE_EV"        
## [17] "Min_MPA_Ath_EV"         "SED_ATHLETE_EV"        
## [19] "Min_SED_Ath_EV"         "MVPA_COACH_TRO"        
## [21] "MIN_MVPA_COACH_TRO"     "VPA_COACH_TRO"         
## [23] "MIN_VPA_COACH_TRO"      "MPA_COACH_TRO"         
## [25] "MIN_MPA_COACH_TRO"      "SED_COACH_TRO"         
## [27] "MIN_SED_COACH_TRO"      "Management"            
## [29] "Knowledge"              "Promo_PA"              
## [31] "Demo_PA"                "Dis"                   
## [33] "MVPA_EV_CHANGE"         "VPA_EV_CHANGE"         
## [35] "MPA_EV_CHANGE"          "SED_EV_CHANGE"         
## [37] "MVPA_COACH_TRO_CHANGE"  "VPA_COACH_TRO_CHANGE"  
## [39] "MPA_COACH_TRO_CHANGE"   "SED_COACH_TRO_CHANGE"  
## [41] "Management_change"      "Knowledge_change"      
## [43] "Promo_PA_change"        "Demo_PA_change"        
## [45] "Dis_change"             "Man_Knowl_change"

Choosing a Model

## Compare linear to quadratic
## Data: dataExclude
## Models:
## TE_base: SED_ATHLETE_EV ~ Condition + baseline + Condition:baseline + 
## TE_base:     Session + (1 | ID) + (1 | Coach) + (1 | Site)
## TE: SED_ATHLETE_EV ~ Condition + baseline + Condition:baseline + 
## TE:     Session + I(Session^2) + (1 | ID) + (1 | Coach) + (1 | Site)
##         Df  AIC  BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## TE_base  9 4054 4093  -2018     4036                        
## TE      10 4056 4099  -2018     4036  0.02      1       0.87
## Compare baseline vs session as treatment variable of interest
## Data: dataExclude
## Models:
## TE: SED_ATHLETE_EV ~ Condition + baseline + Condition:baseline + 
## TE:     Session + I(Session^2) + (1 | ID) + (1 | Coach) + (1 | Site)
## TE_1: SED_ATHLETE_EV ~ Condition + baseline + Session + I(Session^2) + 
## TE_1:     (1 | ID) + (1 | Coach) + (1 | Site) + Condition:baseline + 
## TE_1:     Condition:Session
## TE_2: SED_ATHLETE_EV ~ Condition + baseline + Session + I(Session^2) + 
## TE_2:     (1 | ID) + (1 | Coach) + (1 | Site) + Condition:baseline + 
## TE_2:     Condition:Session + Condition:baseline:Session
##      Df  AIC  BIC logLik deviance Chisq Chi Df Pr(>Chisq)  
## TE   10 4056 4099  -2018     4036                          
## TE_1 11 4058 4106  -2018     4036  0.00      1      0.974  
## TE_2 12 4055 4108  -2016     4031  4.26      1      0.039 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: dataExclude
## Models:
## TE: SED_ATHLETE_EV ~ Condition + baseline + Condition:baseline + 
## TE:     Session + I(Session^2) + (1 | ID) + (1 | Coach) + (1 | Site)
## TE_2: SED_ATHLETE_EV ~ Condition + baseline + Session + I(Session^2) + 
## TE_2:     (1 | ID) + (1 | Coach) + (1 | Site) + Condition:baseline + 
## TE_2:     Condition:Session + Condition:baseline:Session
##      Df  AIC  BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## TE   10 4056 4099  -2018     4036                        
## TE_2 12 4055 4108  -2016     4031  4.26      2       0.12

plot of chunk modelSelect

Total Effects

I will using quasi-bayes simulation for confidence intervals (see Galman and Hills, 2008)

##        (Intercept)          Condition           baseline 
##           51.14718           -0.11501          -19.41472 
##            Session       I(Session^2) Condition:baseline 
##            0.80803           -0.01337           14.72560
## Confidence Intervals
## -----------------------------------
##                        0.5%     2.5%    97.5%    99.5%
## (Intercept)         36.6014  39.5664  62.8759  65.6872
## Condition           -4.1679  -3.1419   2.8163   4.1384
## baseline           -28.3906 -25.6437 -13.5781 -12.2168
## Session             -2.0655  -1.4535   3.2241   4.3662
## I(Session^2)        -0.2486  -0.1772   0.1485   0.1862
## Condition:baseline  10.1815  11.1750  18.5407  19.8123
##        (Intercept)          Condition           baseline 
##          42.875999          -0.074098         -17.344277 
##            Session       I(Session^2)         Management 
##          -0.086658           0.026983          -0.147966 
##          Knowledge                Dis      SED_COACH_TRO 
##           0.001949          -1.122954           0.228105 
## Condition:baseline 
##          12.183030
## Confidence Intervals
## -----------------------------------
##                        0.5%     2.5%    97.5%   99.5%
## (Intercept)         27.0484  30.3238 55.71266 60.4530
## Condition           -3.8638  -2.6503  2.76559  3.4361
## baseline           -27.5232 -25.3993 -9.68731 -7.5609
## Session             -3.6032  -2.6015  2.42261  3.5341
## I(Session^2)        -0.1936  -0.1477  0.19838  0.2594
## Management          -0.4982  -0.4189  0.12477  0.1818
## Knowledge           -0.1536  -0.1181  0.11958  0.1429
## Dis                 -3.0188  -2.4803  0.05013  0.4212
## SED_COACH_TRO        0.1194   0.1416  0.31266  0.3369
## Condition:baseline   7.1942   8.1855 16.05049 17.3576
## Total IE
## Point Estimate:  2.679 
## CIs: -4.691 -2.692 8.087 9.558
## Graph of density of estimated Total indirect effect
## -------------------------------

plot of chunk totalEff

Indirect Effects

Done equation by equation - equivilent to seemingly unrelated regression

## Results: Mangement
## -----------------------
##        (Intercept)          Condition           baseline 
##            16.8011             0.2496            -9.4605 
##            Session Condition:baseline 
##             0.2889             6.5941
## Confidence Intervals
## -----------------------------------
##                        0.5%     2.5%   97.5%   99.5%
## (Intercept)         14.5638  15.1988 18.2758 18.7895
## Condition           -0.7886  -0.4889  1.0636  1.2305
## baseline           -10.8211 -10.5069 -8.2334 -7.8659
## Session              0.1129   0.1587  0.4176  0.4416
## Condition:baseline   4.8081   5.1947  7.7034  8.1999
## Results: Knowledge
## -----------------------
##        (Intercept)          Condition           baseline 
##           22.87447            1.24676           -6.73186 
##            Session Condition:baseline 
##            0.04335            5.53330
## Confidence Intervals
## -----------------------------------
##                        0.5%    2.5%   97.5%   99.5%
## (Intercept)         15.3873 17.2600 28.3557 29.4460
## Condition           -0.8900 -0.5504  3.0116  3.5212
## baseline           -10.0134 -8.9378 -4.4154 -3.4621
## Session             -0.3121 -0.2405  0.3248  0.4291
## Condition:baseline   1.9484  2.7698  8.3668  9.2225
## Results: Dis
## -----------------------
##        (Intercept)          Condition           baseline 
##            1.07787            0.09684           -1.15619 
##            Session Condition:baseline 
##            0.02731           -0.06757
## Confidence Intervals
## -----------------------------------
##                         0.5%      2.5%    97.5%    99.5%
## (Intercept)         0.819848  0.861771  1.27629  1.33487
## Condition          -0.118221 -0.054685  0.25995  0.31454
## baseline           -1.461327 -1.372760 -0.93233 -0.88132
## Session            -0.006849  0.001881  0.05285  0.05922
## Condition:baseline -0.382218 -0.301792  0.15986  0.22481
## Results: SED_COACH_TRO
## -----------------------
##        (Intercept)          Condition           baseline 
##            55.6936             0.4943           -14.8166 
##            Session Condition:baseline 
##             1.6380            14.2173
## Confidence Intervals
## -----------------------------------
##                       0.5%    2.5%   97.5%   99.5%
## (Intercept)         45.607  47.398  63.483  65.802
## Condition           -2.287  -1.673   2.751   3.453
## baseline           -19.236 -18.158 -11.630 -10.605
## Session              1.143   1.266   2.026   2.179
## Condition:baseline   8.872  10.741  18.045  18.951
## Results: SED_ATHLETE_EV
## -----------------------
##        (Intercept)           baseline         Management 
##          42.715355         -18.370020          -0.162448 
##          Knowledge                Dis      SED_COACH_TRO 
##           0.001463          -1.135643           0.226357 
##            Session          Condition baseline:Condition 
##           0.316537          -0.067838          12.304090
## Confidence Intervals
## -----------------------------------
##                        0.5%     2.5%     97.5%    99.5%
## (Intercept)         25.3035  29.6512  54.39401  58.5285
## baseline           -23.4250 -22.3592 -14.24746 -12.9197
## Management          -0.5093  -0.4125   0.08711   0.1920
## Knowledge           -0.1476  -0.1174   0.12246   0.1493
## Dis                 -2.7303  -2.3817   0.24279   0.6423
## SED_COACH_TRO        0.1132   0.1385   0.30907   0.3358
## Session             -0.2367  -0.1078   0.74555   0.8606
## Condition           -3.6621  -2.7889   2.84421   3.9697
## baseline:Condition   6.7803   8.1069  16.28298  17.3703

Calculate Indirect Effects

Again all done via Quasi-bayes

## Management
## Point Estimate:  -1.061 
## CIs: -3.462 -2.819 0.5405 1.307
## Knowledge
## Point Estimate:  -0.004207 
## CIs: -1.095 -0.7027 0.7344 0.9881
## Dis
## Point Estimate:  0.06947 
## CIs: -0.4034 -0.2281 0.441 0.6086
## SED_COACH_TRO
## Point Estimate:  3.203 
## CIs: 1.611 1.861 4.695 5.206
## Total Indirect Effect:
## Total IE
## Point Estimate:  2.207 
## CIs: -0.781 0.1646 4.348 5.052
## Graph of density of estimated Total indirect effect
## -------------------------------

plot of chunk IEcalc