read in data from file
zulilydata<-read.table("zulilycsv.csv", header = T, sep = ",")
names(zulilydata)
## [1] "Demand90" "TotalNewMembers" "Variable"
summary(zulilydata)
## Demand90 TotalNewMembers Variable
## Min. :100 Min. : 5.0 Min. :11.0
## 1st Qu.:200 1st Qu.:10.0 1st Qu.:34.0
## Median :233 Median :11.0 Median :40.0
## Mean :373 Mean :29.4 Mean :45.6
## 3rd Qu.:333 3rd Qu.:22.0 3rd Qu.:44.0
## Max. :999 Max. :99.0 Max. :99.0
Regression
demand<-lm(Demand90 ~ TotalNewMembers + Variable, data=zulilydata)
summary(demand)
##
## Call:
## lm(formula = Demand90 ~ TotalNewMembers + Variable, data = zulilydata)
##
## Residuals:
## 1 2 3 4 5
## -90.6348 52.1467 36.4020 -0.5022 2.5883
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 131.0020 74.0505 1.769 0.2189
## TotalNewMembers 9.6676 1.9389 4.986 0.0379 *
## Variable -0.9261 2.3527 -0.394 0.7319
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 78.31 on 2 degrees of freedom
## Multiple R-squared: 0.9763, Adjusted R-squared: 0.9526
## F-statistic: 41.19 on 2 and 2 DF, p-value: 0.0237
Check vif (install Car package) for whole regression
library(car)
vif(demand)
## TotalNewMembers Variable
## 3.806045 3.806045
check Durbin-Watson (install lmtest package)
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
dwtest(demand)
##
## Durbin-Watson test
##
## data: demand
## DW = 1.7941, p-value = 0.3291
## alternative hypothesis: true autocorrelation is greater than 0