alpha <- 0.5 # 50% confidence
n <- 2 # sample size
mu <- 0 # population mean
sigma <- 1 # population standard deviation
x <- rnorm(n, mu, sigma) # generate the sample
sort(x)
[1] 1.379743 1.476975
error <- qt(1-alpha/2, df=n-1)*sd(x)/sqrt(n)
mean(x) + c(-1, +1) * error
[1] 1.379743 1.476975
t.test(x, conf.level = alpha)
One Sample t-test
data: x
t = 29.38, df = 1, p-value = 0.02166
alternative hypothesis: true mean is not equal to 0
50 percent confidence interval:
1.379743 1.476975
sample estimates:
mean of x
1.428359
R version 3.2.2 (2015-08-14)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 8 x64 (build 9200)
locale:
[1] LC_COLLATE=English_United Kingdom.1252 LC_CTYPE=English_United Kingdom.1252
[3] LC_MONETARY=English_United Kingdom.1252 LC_NUMERIC=C
[5] LC_TIME=English_United Kingdom.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] knitr_1.12.3
loaded via a namespace (and not attached):
[1] magrittr_1.5 formatR_1.3 tools_3.2.2 htmltools_0.3.5 yaml_2.1.13 Rcpp_0.12.4 stringi_1.0-1
[8] rmarkdown_0.9.6 stringr_1.0.0 digest_0.6.9 evaluate_0.9
[1] "~/X/"
This took 0.28 seconds to execute.