Informe salut

if (!require(rmarkdown, quietly = TRUE))  {
  install.packages('rmarkdown', repos='http://cran.rediris.es') 
  }
## Warning: package 'rmarkdown' was built under R version 3.2.5
if (!require(knitr, quietly = TRUE))     {
  install.packages('knitr', repos='http://cran.rediris.es') 
}
## Warning: package 'knitr' was built under R version 3.2.5
if (!require(plotly, quietly = TRUE))     {
  install.packages('plotly', repos='http://cran.rediris.es') 
}
## Warning: package 'plotly' was built under R version 3.2.5
## Warning: package 'ggplot2' was built under R version 3.2.5
if (!require(readr))     {
  install.packages('readr', repos='http://cran.rediris.es') 
  }
## Warning: package 'readr' was built under R version 3.2.5
if (!require(xtable))     {
  install.packages('xtable', repos='http://cran.rediris.es') 
  }
## Warning: package 'xtable' was built under R version 3.2.5
if (!require(stargazer))     {
  install.packages('stargazer', repos='http://cran.rediris.es') 
  }
## Warning: package 'stargazer' was built under R version 3.2.3
if (suppressPackageStartupMessages(!require(googleVis, quietly = TRUE)))  {
  install.packages('googleVis', repos='http://cran.rediris.es') 
}
## Warning: package 'googleVis' was built under R version 3.2.5
if (!require("DT", quietly = T)) {
  install.packages('DT', repos = 'http://cran.rstudio.com')
}
## Warning: package 'DT' was built under R version 3.2.5
if (!require("webshot", quietly = T)) {
  install.packages('webshot', repos = 'http://cran.rstudio.com')
}
## Warning: package 'webshot' was built under R version 3.2.5
if (!require("shiny", quietly = T)) {
  install.packages('shiny', repos = 'http://cran.rstudio.com')
}
## Warning: package 'shiny' was built under R version 3.2.5
require(knitr)

getwd()
## [1] "D:/Documents"
datafile <- "InformeSalut2014_2010.csv"
download.file(url="https://seeds4c.org/tiki-download_file.php?fileId=453", destfile=datafile)

# Take 3 at reading the file, this time setting the locale properly to indicate that the dataset came with the decimal mark also as a comma, besides the field delimiter. Field delimiter also comes surrounded by quotation marks, therefore there is no confusion with this format.
# We will finally detect all numbers as numbers and not as factors
my.data <- readr::read_csv(datafile, locale=readr::locale("es", decimal_mark = ","))
vnames <- colnames(my.data)
my.data<-my.data[,-15]
colnames(my.data) <- c("District", "Suburb", paste0("V", 1:12))

Taules

## ----results = 'asis'----------------------------------------------------
my.subset <- subset(my.data, District == "Sant Andreu", select = -V12)
knitr::kable(my.subset, caption = "Table with kable")
Table with kable
District Suburb V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
Sant Andreu La Trinitat Vella 47.0 29.5 53.5 44.7 17.4 50.7 83.8 92.7 137.8 23.2 15.8
Sant Andreu Baró de Viver 52.7 38.9 61.9 47.0 11.4 56.4 78.2 122.8 232.3 33.0 35.4
Sant Andreu El Bon Pastor 50.6 26.8 71.8 39.1 12.6 46.9 82.1 115.5 114.5 16.7 16.9
Sant Andreu Sant Andreu 48.2 31.6 79.3 26.4 11.2 35.3 83.9 97.0 86.0 18.9 5.8
Sant Andreu La Sagrera 49.4 29.0 74.3 27.4 10.1 37.1 84.8 90.8 92.7 14.5 8.5
Sant Andreu El Congrés i els Indians 63.1 36.8 73.7 27.5 10.8 38.3 84.7 88.9 74.1 21.4 4.2
Sant Andreu Navas 51.8 30.9 75.4 25.8 10.4 36.3 85.4 87.7 87.7 20.2 5.8
print(xtable::xtable(my.subset, caption = "Table with xtable"),
 type = "html", html.table.attributes = "border=1")
Table with xtable
District Suburb V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
1 Sant Andreu La Trinitat Vella 47.00 29.50 53.50 44.70 17.40 50.70 83.80 92.70 137.80 23.20 15.80
2 Sant Andreu Baró de Viver 52.70 38.90 61.90 47.00 11.40 56.40 78.20 122.80 232.30 33.00 35.40
3 Sant Andreu El Bon Pastor 50.60 26.80 71.80 39.10 12.60 46.90 82.10 115.50 114.50 16.70 16.90
4 Sant Andreu Sant Andreu 48.20 31.60 79.30 26.40 11.20 35.30 83.90 97.00 86.00 18.90 5.80
5 Sant Andreu La Sagrera 49.40 29.00 74.30 27.40 10.10 37.10 84.80 90.80 92.70 14.50 8.50
6 Sant Andreu El Congrés i els Indians 63.10 36.80 73.70 27.50 10.80 38.30 84.70 88.90 74.10 21.40 4.20
7 Sant Andreu Navas 51.80 30.90 75.40 25.80 10.40 36.30 85.40 87.70 87.70 20.20 5.80
stargazer::stargazer(my.subset, type = "html",
 title = "Table with stargazer", summary=FALSE)
Table with stargazer
District Suburb V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
1 Sant Andreu La Trinitat Vella 47 29.5 53.5 44.7 17.4 50.7 83.8 92.7 137.8 23.2 15.8
2 Sant Andreu Baró de Viver 52.7 38.9 61.9 47 11.4 56.4 78.2 122.8 232.3 33 35.4
3 Sant Andreu El Bon Pastor 50.6 26.8 71.8 39.1 12.6 46.9 82.1 115.5 114.5 16.7 16.9
4 Sant Andreu Sant Andreu 48.2 31.6 79.3 26.4 11.2 35.3 83.9 97 86 18.9 5.8
5 Sant Andreu La Sagrera 49.4 29 74.3 27.4 10.1 37.1 84.8 90.8 92.7 14.5 8.5
6 Sant Andreu El Congrés i els Indians 63.1 36.8 73.7 27.5 10.8 38.3 84.7 88.9 74.1 21.4 4.2
7 Sant Andreu Navas 51.8 30.9 75.4 25.8 10.4 36.3 85.4 87.7 87.7 20.2 5.8
boxplot(my.subset$V1)

plot(my.subset$V1,my.subset$V2)

barplot(my.subset$V1,legend.text=my.subset$Suburb,col=rainbow(7))

Taules dinàmiques

require('DT')
    d = data.frame(
      my.subset,
      stringsAsFactors = FALSE
    )
    dt <- datatable(d, filter = 'bottom', options = list(pageLength = 5)) %>%
    formatStyle('V1',  
                color = styleInterval(c(0.5, 56), c('black', 'red', 'blue')),
                backgroundColor = styleInterval(56.5, c('snow', 'lightyellow')),
                fontWeight = styleInterval(58.0, c('italics', 'bold')))
dt
# As you can see there is an extra column that came with a note, and not real data. Therefore, we can remove it
tablelegend <- cbind(colnames(my.data[1:14]), vnames[1:14])
tablelegend <- rbind(tablelegend, unlist(strsplit(vnames[15], ":")))
colnames(tablelegend) <- c("Variable Code", "Variable Description")
knitr::kable(tablelegend, caption = "Table with kable")
Table with kable
Variable Code Variable Description
District District (Barcelona-Catalonia-Spain)
Suburb Suburb
V1 Rate of over-aging, year 2014
V2 % of 75 y.o people or more living alone, year 2014
V3 Available Family income rate, year 2013*
V4 % of 15 y.o people or more with primary studies or less, year 2014
V5 % of recorded unemployment 16-64 y.o, year 2014
V6 % of non-voters municipal elections, year 2015
V7 Life expectancy when born, period 2009-2013
V8 Comparative mortality rate, period 2009-2013*
V9 Rate of Potential life years lost, period 2009-2013*
V10 Tuberculosis Rate, period 2010-2014
V11 Teenager fecundity rate, period 2010-2014
V12 Prevalence of low weight when born, period 2010-2014
Note * 100 based on the total of Barcelona; dark gray corresponds to 25% with the worst indicator, green 25% better indicator and light gray the remaining 50%.
# Simple interactive scatter chart
require(knitr)
library(plotly)

# Add some info about variables displayed
cat(paste0("V3: ", tablelegend[5,2]),
    paste0("\nV5: ", tablelegend[7,2]),
    paste0("\nV6: ", tablelegend[8,2]),
    paste0("\nV11: ", tablelegend[13,2]))
## V3: Available Family income rate, year 2013* 
## V5: % of recorded unemployment 16-64 y.o, year 2014 
## V6: % of non-voters municipal elections, year 2015 
## V11: Teenager fecundity rate, period 2010-2014
plot_ly(my.subset, 
        x = my.subset$V5, y = my.subset$V6, text = paste("Over-aging: ", my.subset$V1, 
                                     "Income: ", my.subset$V3,
                                     "Fecundity: ", my.subset$V11,
                                     "Suburb: ", my.subset$Suburb),
        mode="marker",
        size = my.subset$V3, opacity = my.subset$V3,
        group = my.subset$District)