Principal Components Analyses with Joggle Data + Joggle Factors & Neuropsych Correlations

Initial Extraction of the Components

JogglePCA<-principal(JoggleData,nfactors=8,rotate="none")
principal(r=JoggleData,nfactors=8,rotate="none")

Eigen Values

ev <- eigen(cor(JoggleData))
ev$values
## [1] 2.7241 1.2642 0.9379 0.8403 0.7325 0.5872 0.5281 0.3856

Scree Plot

ap <- parallel(subject=nrow(JoggleData),var=ncol(JoggleData), rep=100,cent=.05)
nS <- nScree(x=ev$values, aparallel=ap$eigen$qevpea)
plotnScree(nS)

plot of chunk unnamed-chunk-4

Rotation to Final Solution - 3 Factors

JogglePCA.r<-principal(JoggleData,nfactors=3,rotate="promax",scores=T)
principal(r=JoggleData,nfactors=3,rotate="promax",scores=T)
## Principal Components Analysis
## Call: principal(r = JoggleData, nfactors = 3, rotate = "promax", scores = T)
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  PC1   PC2   PC3   h2    u2
## BARTaccuracy   -0.01  0.08  0.98 0.98 0.023
## DSSTefficiency  0.81  0.07 -0.05 0.69 0.310
## LOTefficiency   0.78  0.07  0.01 0.64 0.357
## PVTefficiency  -0.20  0.91  0.06 0.77 0.228
## AMefficiency    0.77 -0.46  0.02 0.63 0.371
## NBACKaccuracy   0.52 -0.16  0.12 0.29 0.714
## VOLTefficiency  0.51  0.32 -0.10 0.44 0.563
## MPTspeed        0.42  0.45  0.03 0.49 0.507
## 
##                        PC1  PC2  PC3
## SS loadings           2.57 1.35 1.00
## Proportion Var        0.32 0.17 0.13
## Cumulative Var        0.32 0.49 0.62
## Proportion Explained  0.52 0.27 0.20
## Cumulative Proportion 0.52 0.80 1.00
## 
##  With component correlations of 
##      PC1  PC2  PC3
## PC1 1.00 0.26 0.18
## PC2 0.26 1.00 0.05
## PC3 0.18 0.05 1.00
## 
## Test of the hypothesis that 3 components are sufficient.
## 
## The degrees of freedom for the null model are  28  and the objective function was  1.44
## The degrees of freedom for the model are 7  and the objective function was  0.4 
## The total number of observations was  1793  with MLE Chi Square =  717  with prob <  1.5e-150 
## 
## Fit based upon off diagonal values = 0.87

Bind Factor Scores to Joggle1

load(file='/Users/meganwilliams/Desktop/HANDLS/Joggle/Joggle PCA/Joggle1.rdata')
summary(JogglePCA.r$scores)
##       PC1              PC2              PC3        
##  Min.   :-3.612   Min.   :-3.686   Min.   :-2.479  
##  1st Qu.:-0.683   1st Qu.:-0.674   1st Qu.:-0.887  
##  Median : 0.081   Median :-0.098   Median : 0.130  
##  Mean   : 0.000   Mean   : 0.000   Mean   : 0.000  
##  3rd Qu.: 0.785   3rd Qu.: 0.670   3rd Qu.: 0.854  
##  Max.   : 2.887   Max.   : 3.370   Max.   : 1.671
data=cbind(Joggle1,JogglePCA.r$scores)
summary(data)
##     HNDid            BARTaccuracy  DSSTefficiency LOTefficiency
##  Length:1793        Min.   :  19   Min.   :  1    Min.   :  0  
##  Class :character   1st Qu.: 390   1st Qu.:300    1st Qu.:333  
##  Mode  :character   Median : 700   Median :428    Median :475  
##                     Mean   : 651   Mean   :477    Mean   :434  
##                     3rd Qu.: 871   3rd Qu.:655    3rd Qu.:564  
##                     Max.   :1000   Max.   :981    Max.   :875  
##  PVTefficiency  AMefficiency NBACKaccuracy VOLTefficiency    MPTspeed  
##  Min.   :  4   Min.   :118   Min.   :  0   Min.   :101    Min.   : 18  
##  1st Qu.: 25   1st Qu.:397   1st Qu.: 96   1st Qu.:359    1st Qu.:871  
##  Median :151   Median :451   Median :183   Median :400    Median :917  
##  Mean   :243   Mean   :443   Mean   :203   Mean   :395    Mean   :886  
##  3rd Qu.:450   3rd Qu.:487   3rd Qu.:274   3rd Qu.:447    3rd Qu.:967  
##  Max.   :970   Max.   :666   Max.   :845   Max.   :688    Max.   :996  
##       PC1              PC2              PC3        
##  Min.   :-3.612   Min.   :-3.686   Min.   :-2.479  
##  1st Qu.:-0.683   1st Qu.:-0.674   1st Qu.:-0.887  
##  Median : 0.081   Median :-0.098   Median : 0.130  
##  Mean   : 0.000   Mean   : 0.000   Mean   : 0.000  
##  3rd Qu.: 0.785   3rd Qu.: 0.670   3rd Qu.: 0.854  
##  Max.   : 2.887   Max.   : 3.370   Max.   : 1.671
save(data,file='/Users/meganwilliams/Desktop/HANDLS/Joggle/Joggle PCA/data.rdata')
load(file='/Users/meganwilliams/Desktop/HANDLS/Joggle/Joggle PCA/data.rdata')

Correlation between Joggle Factor Scores and Neuropsych Wave 1 Data

jogFactors = zQ(PC1,PC2,PC3)
zCor(JoggleNeuro1[, jogFactors], JoggleNeuro1[, Neuro1VARS])
##     BVRtot   CrdRot   IdentPicScore CVLtca   DigitSpanFwd DigitSpanBck
## PC1 -0.25     0.14***  0.41***      -0.04    -0.08**      -0.04       
## PC2 -0.41*** -0.03     0.29***       0.35***  0.31***      0.47***    
## PC3 -0.18***  0.19***  0.21          0.16***  0.12***      0.08**     
##     FluencyWord TrailsAtestSec TrailsBtestSec Attention ClockTotal
## PC1  0.52***    -0.24***       -0.31***       -0.06      0.03     
## PC2  0.02       -0.10**        -0.11***        0.34***   0.10***  
## PC3  0.04       -0.04          -0.10***        0.12***   0.15***  
##     TrailsBminusA
## PC1 -0.27***     
## PC2 -0.09**      
## PC3 -0.10**      
## 
## n =  1133

Correlation between Joggle Factor Scores and Neuropsych Wave 3 Data

jogFactors = zQ(PC1,PC2,PC3)
zCor(JoggleNeuro3[, jogFactors], JoggleNeuro3[, Neuro3VARS])
##     BVRtot   StroopInterference StroopWords CVLtca   DigitSpanFwd
## PC1 -0.59     0.21***            0.04        0.49***  0.07       
## PC2 -0.12**  -0.42               0.44***     0.03     0.31***    
## PC3 -0.12**   0.01               0.08        0.12**   0.08*      
##     DigitSpanBck FluencyWord TrailsAtestSec TrailsBtestSec Attention
## PC1  0.14***      0.43***    -0.31***       -0.52***        0.38*** 
## PC2  0.23***     -0.05        0.03          -0.15***        0.14*** 
## PC3  0.04         0.07       -0.07*         -0.18***        0.13*** 
##     ClockTotal TrailsBminusA
## PC1  0.41***   -0.48***     
## PC2 -0.19***   -0.16***     
## PC3  0.07      -0.17***     
## 
## n =  708