Title

library(ggplot2)
head(diamonds)
##   carat       cut color clarity depth table price    x    y    z
## 1  0.23     Ideal     E     SI2  61.5    55   326 3.95 3.98 2.43
## 2  0.21   Premium     E     SI1  59.8    61   326 3.89 3.84 2.31
## 3  0.23      Good     E     VS1  56.9    65   327 4.05 4.07 2.31
## 4  0.29   Premium     I     VS2  62.4    58   334 4.20 4.23 2.63
## 5  0.31      Good     J     SI2  63.3    58   335 4.34 4.35 2.75
## 6  0.24 Very Good     J    VVS2  62.8    57   336 3.94 3.96 2.48

By the way, the number above was calculated 'inline' with the code, 53940 (It seems that you can't make something verbatim in the verbatem context.)

set.seed(1000)  # make sample reproducible
dsmall <- diamonds[sample(nrow(diamonds), 100), ]
head(dsmall)
##       carat   cut color clarity depth table price    x    y    z
## 17686  1.23 Ideal     H     VS2  62.2    55  7130 6.81 6.85 4.25
## 40932  0.30 Ideal     E     SI1  61.7    58   499 4.29 4.30 2.65
## 6146   0.90  Good     H     VS2  61.9    58  3989 6.14 6.18 3.81
## 37258  0.31 Ideal     G    VVS1  62.8    57   977 4.33 4.30 2.71
## 27853  0.31 Ideal     G     VS2  61.5    56   652 4.34 4.36 2.68
## 3654   1.01 Ideal     F      I1  62.2    54  3439 6.44 6.42 4.00

The defaults of qplot() are 'x, y, data ='

qplot(carat, price, data = dsmall)

plot of chunk unnamed-chunk-2

qplot accepts functions of variable as arguments so we can look at the logged variables to see if the relationship is closer to linear when the data is transformed.