This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.
In this short project we:
To determine the most harmful event we use a simple weighted system for adding fatalities and injuries (based on http://www.rssb.co.uk/rgs/standards/GEGN8642%20Iss%202.pdf)
For the economic conqequences we evaluate the damage, looking at damage to both properties and crops. The sum of both damages is then used as an indicator of the total damage were both types of damage have the same weight.
First we have to ensure the locale is correct, lets ensure all is in english….
Sys.setlocale("LC_ALL","English");
## [1] "LC_COLLATE=English_United States.1252;LC_CTYPE=English_United States.1252;LC_MONETARY=English_United States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252"
To prevent downloading for each run this analysis uses the download and unzipped file, we’ve downloaded it once earlier. We assume the unzipped file is in the working directory. We left the name as is.The data is downloaded from https://d396qusza40orc.cloudfront.net/repdata/data/StormData.csv.bz2 at 2 juli 2016, 23:38 local time, Europe.
stormdata <- read.csv("repdata%2Fdata%2FStormData.csv", header=TRUE, sep=",");
To get some impression of the storm data we have a quick peek.
# look at first few rows
head(stormdata);
## STATE__ BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1 1 4/18/1950 0:00:00 0130 CST 97 MOBILE AL
## 2 1 4/18/1950 0:00:00 0145 CST 3 BALDWIN AL
## 3 1 2/20/1951 0:00:00 1600 CST 57 FAYETTE AL
## 4 1 6/8/1951 0:00:00 0900 CST 89 MADISON AL
## 5 1 11/15/1951 0:00:00 1500 CST 43 CULLMAN AL
## 6 1 11/15/1951 0:00:00 2000 CST 77 LAUDERDALE AL
## EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END
## 1 TORNADO 0 0
## 2 TORNADO 0 0
## 3 TORNADO 0 0
## 4 TORNADO 0 0
## 5 TORNADO 0 0
## 6 TORNADO 0 0
## COUNTYENDN END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES
## 1 NA 0 14.0 100 3 0 0
## 2 NA 0 2.0 150 2 0 0
## 3 NA 0 0.1 123 2 0 0
## 4 NA 0 0.0 100 2 0 0
## 5 NA 0 0.0 150 2 0 0
## 6 NA 0 1.5 177 2 0 0
## INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES
## 1 15 25.0 K 0
## 2 0 2.5 K 0
## 3 2 25.0 K 0
## 4 2 2.5 K 0
## 5 2 2.5 K 0
## 6 6 2.5 K 0
## LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1 3040 8812 3051 8806 1
## 2 3042 8755 0 0 2
## 3 3340 8742 0 0 3
## 4 3458 8626 0 0 4
## 5 3412 8642 0 0 5
## 6 3450 8748 0 0 6
# Lets see what the data looks like
summary(stormdata);
## STATE__ BGN_DATE BGN_TIME
## Min. : 1.0 5/25/2011 0:00:00: 1202 12:00:00 AM: 10163
## 1st Qu.:19.0 4/27/2011 0:00:00: 1193 06:00:00 PM: 7350
## Median :30.0 6/9/2011 0:00:00 : 1030 04:00:00 PM: 7261
## Mean :31.2 5/30/2004 0:00:00: 1016 05:00:00 PM: 6891
## 3rd Qu.:45.0 4/4/2011 0:00:00 : 1009 12:00:00 PM: 6703
## Max. :95.0 4/2/2006 0:00:00 : 981 03:00:00 PM: 6700
## (Other) :895866 (Other) :857229
## TIME_ZONE COUNTY COUNTYNAME STATE
## CST :547493 Min. : 0.0 JEFFERSON : 7840 TX : 83728
## EST :245558 1st Qu.: 31.0 WASHINGTON: 7603 KS : 53440
## MST : 68390 Median : 75.0 JACKSON : 6660 OK : 46802
## PST : 28302 Mean :100.6 FRANKLIN : 6256 MO : 35648
## AST : 6360 3rd Qu.:131.0 LINCOLN : 5937 IA : 31069
## HST : 2563 Max. :873.0 MADISON : 5632 NE : 30271
## (Other): 3631 (Other) :862369 (Other):621339
## EVTYPE BGN_RANGE BGN_AZI
## HAIL :288661 Min. : 0.000 :547332
## TSTM WIND :219940 1st Qu.: 0.000 N : 86752
## THUNDERSTORM WIND: 82563 Median : 0.000 W : 38446
## TORNADO : 60652 Mean : 1.484 S : 37558
## FLASH FLOOD : 54277 3rd Qu.: 1.000 E : 33178
## FLOOD : 25326 Max. :3749.000 NW : 24041
## (Other) :170878 (Other):134990
## BGN_LOCATI END_DATE END_TIME
## :287743 :243411 :238978
## COUNTYWIDE : 19680 4/27/2011 0:00:00: 1214 06:00:00 PM: 9802
## Countywide : 993 5/25/2011 0:00:00: 1196 05:00:00 PM: 8314
## SPRINGFIELD : 843 6/9/2011 0:00:00 : 1021 04:00:00 PM: 8104
## SOUTH PORTION: 810 4/4/2011 0:00:00 : 1007 12:00:00 PM: 7483
## NORTH PORTION: 784 5/30/2004 0:00:00: 998 11:59:00 PM: 7184
## (Other) :591444 (Other) :653450 (Other) :622432
## COUNTY_END COUNTYENDN END_RANGE END_AZI
## Min. :0 Mode:logical Min. : 0.0000 :724837
## 1st Qu.:0 NA's:902297 1st Qu.: 0.0000 N : 28082
## Median :0 Median : 0.0000 S : 22510
## Mean :0 Mean : 0.9862 W : 20119
## 3rd Qu.:0 3rd Qu.: 0.0000 E : 20047
## Max. :0 Max. :925.0000 NE : 14606
## (Other): 72096
## END_LOCATI LENGTH WIDTH
## :499225 Min. : 0.0000 Min. : 0.000
## COUNTYWIDE : 19731 1st Qu.: 0.0000 1st Qu.: 0.000
## SOUTH PORTION : 833 Median : 0.0000 Median : 0.000
## NORTH PORTION : 780 Mean : 0.2301 Mean : 7.503
## CENTRAL PORTION: 617 3rd Qu.: 0.0000 3rd Qu.: 0.000
## SPRINGFIELD : 575 Max. :2315.0000 Max. :4400.000
## (Other) :380536
## F MAG FATALITIES INJURIES
## Min. :0.0 Min. : 0.0 Min. : 0.0000 Min. : 0.0000
## 1st Qu.:0.0 1st Qu.: 0.0 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median :1.0 Median : 50.0 Median : 0.0000 Median : 0.0000
## Mean :0.9 Mean : 46.9 Mean : 0.0168 Mean : 0.1557
## 3rd Qu.:1.0 3rd Qu.: 75.0 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :5.0 Max. :22000.0 Max. :583.0000 Max. :1700.0000
## NA's :843563
## PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP
## Min. : 0.00 :465934 Min. : 0.000 :618413
## 1st Qu.: 0.00 K :424665 1st Qu.: 0.000 K :281832
## Median : 0.00 M : 11330 Median : 0.000 M : 1994
## Mean : 12.06 0 : 216 Mean : 1.527 k : 21
## 3rd Qu.: 0.50 B : 40 3rd Qu.: 0.000 0 : 19
## Max. :5000.00 5 : 28 Max. :990.000 B : 9
## (Other): 84 (Other): 9
## WFO STATEOFFIC
## :142069 :248769
## OUN : 17393 TEXAS, North : 12193
## JAN : 13889 ARKANSAS, Central and North Central: 11738
## LWX : 13174 IOWA, Central : 11345
## PHI : 12551 KANSAS, Southwest : 11212
## TSA : 12483 GEORGIA, North and Central : 11120
## (Other):690738 (Other) :595920
## ZONENAMES
## :594029
## :205988
## GREATER RENO / CARSON CITY / M - GREATER RENO / CARSON CITY / M : 639
## GREATER LAKE TAHOE AREA - GREATER LAKE TAHOE AREA : 592
## JEFFERSON - JEFFERSON : 303
## MADISON - MADISON : 302
## (Other) :100444
## LATITUDE LONGITUDE LATITUDE_E LONGITUDE_
## Min. : 0 Min. :-14451 Min. : 0 Min. :-14455
## 1st Qu.:2802 1st Qu.: 7247 1st Qu.: 0 1st Qu.: 0
## Median :3540 Median : 8707 Median : 0 Median : 0
## Mean :2875 Mean : 6940 Mean :1452 Mean : 3509
## 3rd Qu.:4019 3rd Qu.: 9605 3rd Qu.:3549 3rd Qu.: 8735
## Max. :9706 Max. : 17124 Max. :9706 Max. :106220
## NA's :47 NA's :40
## REMARKS REFNUM
## :287433 Min. : 1
## : 24013 1st Qu.:225575
## Trees down.\n : 1110 Median :451149
## Several trees were blown down.\n : 569 Mean :451149
## Trees were downed.\n : 446 3rd Qu.:676723
## Large trees and power lines were blown down.\n: 432 Max. :902297
## (Other) :588294
# What is the type of a column?
sapply(stormdata, class);
## STATE__ BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME
## "numeric" "factor" "factor" "factor" "numeric" "factor"
## STATE EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE
## "factor" "factor" "numeric" "factor" "factor" "factor"
## END_TIME COUNTY_END COUNTYENDN END_RANGE END_AZI END_LOCATI
## "factor" "numeric" "logical" "numeric" "factor" "factor"
## LENGTH WIDTH F MAG FATALITIES INJURIES
## "numeric" "numeric" "integer" "numeric" "numeric" "numeric"
## PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC
## "numeric" "factor" "numeric" "factor" "factor" "factor"
## ZONENAMES LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS
## "factor" "numeric" "numeric" "numeric" "numeric" "factor"
## REFNUM
## "numeric"
# Which events are in our data? List of distinct values?
# unique(stormdata$EVTYPE)
# Are there NA's?
sum(is.na(stormdata$EVTYPE));
## [1] 0
# What are the damage exp values, for property and crops
unique(stormdata$PROPDMGEXP);
## [1] K M B m + 0 5 6 ? 4 2 3 h 7 H - 1 8
## Levels: - ? + 0 1 2 3 4 5 6 7 8 B h H K m M
unique(stormdata$CROPDMGEXP);
## [1] M K m B ? 0 k 2
## Levels: ? 0 2 B k K m M
To see which events are most harmfull we need to express the harm. The data contains information about injuries and fatalities. One issue is how to aggregate to one value; what’s the ‘weight’ of an injury compared to a fatality? There is no column of weighted injuries or something like that. To keep it simple we treat all injuries as major with weight 0.1, as derived from the britsich railroad standards (http://www.rssb.co.uk/rgs/standards/GEGN8642%20Iss%202.pdf)
First we aggregate for both the fatalities and injuries and order the data by decreasing weighted harm.
# Only aggregate for the fatalitieshead and injuries
stoda.harm.aggregated <- aggregate(stormdata[c("FATALITIES","INJURIES")], by=list(stormdata$EVTYPE), sum);
names(stoda.harm.aggregated)[1]<-"StormEvent";
# weighted order, injury is 0.1 of a fatality (britsch railroad standards...)
stoda.harm.aggregated$Weighted <- stoda.harm.aggregated$FATALITIES + stoda.harm.aggregated$INJURIES * 0.1;
stoda.harm.aggr.order.indexes <- order(stoda.harm.aggregated$Weighted, decreasing = TRUE);
To see which events have the greatest economic impact we need to express the costs. We need to map the EXP columns to a simple multiplier. In the analysis we saw the list of unique Exponents…
| Exponent | |||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| For properties | - | ? | + | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | B | h | H | K | m | M | |
| For crops | ? | 0 | 2 | B | k | K | m | M | |||||||||||
| Mapping 10^x, x | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 2 | 2 | 3 | 3 | 6 | 6 |
Where B is billion, h is hundreds, k is thousands and m is millsions, by converting all to upper we can shorten the lookup a bit.
# Create lookup table <todo smarter/shorter>
library(plyr);
base.list <- c(0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 6);
exp.list <- c("", "-", "?", "+", "0", "1", "2", "3", "4", "5", "6", "7", "8", "B", "H", "K", "M");
# now use lookup factor and determine cost <todo in one step>
# Mmm. wanted something simpler.
lookup.table <- data.frame(prop.dmg.factor = base.list, PROPDMGEXP = exp.list);
stormdata.factors <- join(stormdata, lookup.table, by='PROPDMGEXP');
lookup.table <- data.frame(crop.dmg.factor = base.list, CROPDMGEXP = exp.list);
stormdata.factors <- join(stormdata.factors, lookup.table, by='CROPDMGEXP');
# We have the factors now determine the amount of $
stormdata.factors$CROPDMGAMOUNT <- stormdata.factors$CROPDMG * 10 ^ stormdata.factors$crop.dmg.factor;
stormdata.factors$PROPDMGAMOUNT <- stormdata.factors$PROPDMG * 10 ^ stormdata.factors$prop.dmg.factor;
stormdata.factors$TOTDMGAMOUNT <- stormdata.factors$CROPDMGAMOUNT + stormdata.factors$PROPDMGAMOUNT;
Using the aggregated and weigthed injuries we show the top 7 events resulting in the most harm.
# show first 7 rows
stoda.harm.aggregated[stoda.harm.aggr.order.indexes[1:7],];
## StormEvent FATALITIES INJURIES Weighted
## 834 TORNADO 5633 91346 14767.6
## 130 EXCESSIVE HEAT 1903 6525 2555.5
## 464 LIGHTNING 816 5230 1339.0
## 856 TSTM WIND 504 6957 1199.7
## 153 FLASH FLOOD 978 1777 1155.7
## 170 FLOOD 470 6789 1148.9
## 275 HEAT 937 2100 1147.0
To get a better insight the top 7 is shown in an ordered bar plot. Note that the barplot is only for a quick relative overview.
library(ggplot2);
library(reshape2);
stoda.harm.aggregated.top7 <- stoda.harm.aggregated[stoda.harm.aggr.order.indexes[1:7],];
# reset factor
stoda.harm.aggregated.top7$StormEvent <- factor(stoda.harm.aggregated.top7$StormEvent);
# One figure
# with barplot order by weighted value
stoda.harm.aggregated.top7.melted <- melt(stoda.harm.aggregated.top7, id.vars=c("StormEvent", "Weighted"));
#stoda.harm.aggregated.top7.melted
ggplot(stoda.harm.aggregated.top7.melted, aes(x=reorder(StormEvent, -Weighted), y=value, fill=variable))+geom_bar(stat = "identity") + labs(title="Top 7 Storm related events", x = "Storm Event", y = "#people invloved (weighted value)")+ theme(axis.text.x = element_text(face="bold", color="#993333", size=8, angle=45), axis.text.y = element_text(face="bold", color="#993333", size=12, angle=45));
Using the amount of $ in damages for both property and crops we can have a look at the top7.
stoda.economic.aggregated <- aggregate(stormdata.factors[c("CROPDMGAMOUNT","PROPDMGAMOUNT", "TOTDMGAMOUNT")], by=list(stormdata.factors$EVTYPE), sum);
names(stoda.economic.aggregated)[1]<-"StormEvent"
stoda.economic.aggr.ordered.indexes <- order(stoda.economic.aggregated$TOTDMGAMOUNT, decreasing = TRUE);
head(stoda.economic.aggr.ordered.indexes);
## [1] 170 411 670 153 95 402
# show first 7 rows
stoda.economic.aggr.top7 <- stoda.economic.aggregated[stoda.economic.aggr.ordered.indexes[1:7], ];
# Refactor in M$ (i.e. divide by 1000000)
stoda.economic.aggr.top7$CROPDMGAMOUNT <- stoda.economic.aggr.top7$CROPDMGAMOUNT / 1000000;
stoda.economic.aggr.top7$PROPDMGAMOUNT <- stoda.economic.aggr.top7$PROPDMGAMOUNT / 1000000;
stoda.economic.aggr.top7$TOTDMGAMOUNT <- stoda.economic.aggr.top7$TOTDMGAMOUNT / 1000000;
stoda.economic.aggr.top7
## StormEvent CROPDMGAMOUNT PROPDMGAMOUNT TOTDMGAMOUNT
## 170 FLOOD 5661.968 144657.710 150319.68
## 411 HURRICANE/TYPHOON 2607.873 69305.840 71913.71
## 670 STORM SURGE 0.005 43323.536 43323.54
## 153 FLASH FLOOD 1421.317 16822.674 18243.99
## 95 DROUGHT 13972.566 1046.106 15018.67
## 402 HURRICANE 2741.910 11868.319 14610.23
## 590 RIVER FLOOD 5029.459 5118.945 10148.40
To get an idea of the top 7 events with respect to economic damage we use the same type of diagram as we used for harm. To be able to handle the damagecost they’re scaled to million dollar figures.
stoda.economic.aggr.top7.melted <- melt(stoda.economic.aggr.top7, id.vars=c("StormEvent", "TOTDMGAMOUNT"));
ggplot(stoda.economic.aggr.top7.melted, aes(x=reorder(StormEvent, -TOTDMGAMOUNT), y=value, fill=variable)) +
geom_bar(stat = "identity") + labs(title="Top 7 Storm related events", x = "Storm Event", y = "Economic damage in m$") +
theme(axis.text.x = element_text(face="bold", color="#993333", size=8, angle=45), axis.text.y = element_text(face="bold", color="#993333", size=12, angle=45));
Looking at the two major factors, harm and economic costs we see that tornado’s lead to most harmed people while flood leads to the greatest economic impact on properties.