Classification 1: mean are 0.3688677 and 0.4651583, and standard deviations are 0.12236236 and 0.04692031.
Classification 2: mean are 0.2100500 and 0.4031785, and standard deviations are 0.0792411 and 0.1059064.
So all the values below 0.37, I will use that corresponding data file to estimate the covariance of all the amino acids.
## [1] "Sample size will be 729"
To testing the significant, I use the data cutoff for good-data and bad-data are <0.37 and >0.48. This is testing the difference of the two covariances from the two samples. And there are 20 out of the 57 tests return significant, therefore, we estimated the covariance from the samples <0.37. And the results is as below.
## v p.value
## [1,] "A-B" "0.737142714850322"
## [2,] "A-C" "0.0102042045470334"
## [3,] "A-H" "0.15238928550741"
## [4,] "R-B" "0.852376358109126"
## [5,] "R-C" "0.000754221548288747"
## [6,] "R-H" "0.616361406848271"
## [7,] "N-B" "0.00828378008976971"
## [8,] "N-C" "0.59184421895955"
## [9,] "N-H" "0.349122849369314"
## [10,] "D-B" "0.0171643909170487"
## [11,] "D-C" "3.41196493591767e-06"
## [12,] "D-H" "0.049300158039949"
## [13,] "C-B" "0.0189771133982759"
## [14,] "C-C" "0.362608626431839"
## [15,] "C-H" "0.00114826100651721"
## [16,] "Q-B" "0.513328561865517"
## [17,] "Q-C" "0.00652971216172382"
## [18,] "Q-H" "0.163798135846292"
## [19,] "E-B" "0.403456859932128"
## [20,] "E-C" "0.291462646922404"
## [21,] "E-H" "0.0265514929937438"
## [22,] "H-B" "0.483089639659335"
## [23,] "H-C" "0.773501951820805"
## [24,] "H-H" "0.359683642963597"
## [25,] "I-B" "0.166032256398974"
## [26,] "I-C" "0.355185645314864"
## [27,] "I-H" "0.0253774714413806"
## [28,] "L-B" "0.0410519270691061"
## [29,] "L-C" "0.00151316083480402"
## [30,] "L-H" "0.570446967817319"
## [31,] "K-B" "0.565190727075138"
## [32,] "K-C" "0.124131758351224"
## [33,] "K-H" "1.05135657779698e-05"
## [34,] "M-B" "0.988063039237699"
## [35,] "M-C" "0.0100082605335099"
## [36,] "M-H" "0.920674171571159"
## [37,] "F-B" "0.441535379458004"
## [38,] "F-C" "0.0157426704106727"
## [39,] "F-H" "0.515723869755458"
## [40,] "P-B" "0.115839386987015"
## [41,] "P-C" "0.041013062171352"
## [42,] "P-H" "0.407787408572974"
## [43,] "S-B" "0.0140567153901503"
## [44,] "S-C" "0.348738036097518"
## [45,] "S-H" "0.0225359135698493"
## [46,] "T-B" "6.68529146352626e-06"
## [47,] "T-C" "0.000823267392149107"
## [48,] "T-H" "0.00032282638144876"
## [49,] "Y-B" "0.257062103123471"
## [50,] "Y-C" "0.00580678697605563"
## [51,] "Y-H" "0.952058985867915"
## [52,] "W-B" "0.498675977146035"
## [53,] "W-C" "0.385558685405271"
## [54,] "W-H" "0.453685420324706"
## [55,] "V-B" "0.221829774085398"
## [56,] "V-C" "0.439396782123487"
## [57,] "V-H" "4.1903946979005e-10"
## [1] 20
column names are: sample size, covariance, correlation
## $`A-B`
## [1] 1186.0000000 -0.9933715 -0.3765986
##
## $`A-C`
## [1] 1766.000000 -0.577054 -0.279880
##
## $`A-H`
## [1] 2604.0000000 -0.3102361 -0.3439466
##
## $`R-B`
## [1] 1064.0000000 -1.0488134 -0.4012831
##
## $`R-C`
## [1] 1338.0000000 -0.7331641 -0.2009029
##
## $`R-H`
## [1] 1.480000e+03 3.160306e-03 2.446663e-03
##
## $`N-B`
## [1] 626.00000000 0.22535841 0.08110761
##
## $`N-C`
## [1] 1820.0000000 -0.4554736 -0.2103610
##
## $`N-H`
## [1] 780.0000000 -0.2001824 -0.1306576
##
## $`D-B`
## [1] 837.0000000 -0.1029460 -0.0381642
##
## $`D-C`
## [1] 2523.0000000 -0.4825455 -0.1164453
##
## $`D-H`
## [1] 1.328000e+03 5.057505e-02 3.286730e-02
##
## $`C-B`
## [1] 433.0000000 -6.0550625 -0.4229983
##
## $`C-C`
## [1] 452.0000000 -7.9736806 -0.5084138
##
## $`C-H`
## [1] 350.0000000 -19.5210649 -0.3542063
##
## $`Q-B`
## [1] 657.0000000 -0.8440757 -0.3335678
##
## $`Q-C`
## [1] 1128.0000000 -0.9333932 -0.2411145
##
## $`Q-H`
## [1] 1381.0000000 -0.2018717 -0.1663326
##
## $`E-B`
## [1] 1189.0000000 -1.0354833 -0.4141322
##
## $`E-C`
## [1] 2144.0000000 -0.9967293 -0.3922832
##
## $`E-H`
## [1] 2640.0000000 -0.1796031 -0.1493640
##
## $`H-B`
## [1] 470.00000000 0.19239885 0.05524868
##
## $`H-C`
## [1] 747.00000000 -0.17222415 -0.04460166
##
## $`H-H`
## [1] 562.0000000 0.2840652 0.1219700
##
## $`I-B`
## [1] 1834.0000000 -0.4351673 -0.1634190
##
## $`I-C`
## [1] 916.0000000 -0.7237291 -0.2381589
##
## $`I-H`
## [1] 1369.0000000 0.4364401 0.2206447
##
## $`L-B`
## [1] 2065.0000000 -0.8016776 -0.3382421
##
## $`L-C`
## [1] 1801.0000000 -0.5365736 -0.2101911
##
## $`L-H`
## [1] 2823.0000000 -0.3101273 -0.2103686
##
## $`K-B`
## [1] 1378.0000000 -0.7245197 -0.3080199
##
## $`K-C`
## [1] 2148.0000000 -0.8171199 -0.2791819
##
## $`K-H`
## [1] 1.980000e+03 1.947758e-02 1.680974e-02
##
## $`M-B`
## [1] 388.00000000 0.10227293 0.03311725
##
## $`M-C`
## [1] 625.0000000 -0.7526935 -0.2329029
##
## $`M-H`
## [1] 693.0000000 1.1257735 0.3831066
##
## $`F-B`
## [1] 1174.0000000 -0.4465210 -0.1633602
##
## $`F-C`
## [1] 786.00000000 -0.22068540 -0.06214466
##
## $`F-H`
## [1] 1009.0000000 0.3150024 0.1408849
##
## $`P-B`
## [1] 641.00000000 -0.02472701 -0.01662971
##
## $`P-C`
## [1] 2303.00000000 -0.05374849 -0.03466999
##
## $`P-H`
## [1] 419.0000000 -0.2007258 -0.2295327
##
## $`S-B`
## [1] 1147.0000000 -0.5161696 -0.2283037
##
## $`S-C`
## [1] 2918.0000000 -0.7349567 -0.3661219
##
## $`S-H`
## [1] 1154.0000000 -0.3616235 -0.2617560
##
## $`T-B`
## [1] 1530.0000000 -0.9174117 -0.2191130
##
## $`T-C`
## [1] 1757.0000000 -1.3653929 -0.4591621
##
## $`T-H`
## [1] 1022.0000000 -1.3694568 -0.5102328
##
## $`Y-B`
## [1] 1046.0000000 -0.3466151 -0.1249385
##
## $`Y-C`
## [1] 712.00000000 -0.11854118 -0.02741412
##
## $`Y-H`
## [1] 742.0000000 0.2044582 0.1041339
##
## $`W-B`
## [1] 404.0000000 -0.6447850 -0.2250234
##
## $`W-C`
## [1] 264.0000000 -0.8121571 -0.2211414
##
## $`W-H`
## [1] 327.0000000 -0.4963807 -0.2212419
##
## $`V-B`
## [1] 2545.0000000 -1.4931074 -0.5317318
##
## $`V-C`
## [1] 1313.0000000 -1.3305446 -0.4439499
##
## $`V-H`
## [1] 1550.0000000 -0.3254695 -0.2745089