Using PCA to represnt digits in the eigen-digits space

In this article, the handwritten digits dataset (mnist_train) is going to be used to visualize and demonstrate how Principal Component Analysis can be used to represent the digits in the low dimensional feature space as a linear combination of the principal components as orthonormal basis vectors.

##  [1] 57.87 63.76 66.76 69.38 71.32 72.95 74.32 75.55 76.69 77.79 78.87
## [12] 79.87 80.72 81.50 82.25 82.95 83.60 84.18 84.74 85.26 85.77 86.26
## [23] 86.73 87.16 87.55 87.92 88.29 88.64 88.97 89.31 89.62 89.92 90.20
## [34] 90.47 90.72 90.97 91.20 91.43 91.64 91.84 92.03 92.22 92.41 92.59
## [45] 92.76 92.93 93.08 93.24 93.39 93.54 93.69 93.83 93.97 94.10 94.22
## [56] 94.35 94.47 94.58 94.69 94.81 94.91 95.02 95.12 95.22 95.31 95.41
## [67] 95.50 95.59 95.67 95.76 95.84 95.92 96.00 96.08 96.15

## [1] "Weights for the first 20 basis vectors for the digit"
##  [1] -1905.408055  1355.563894   564.485519   -78.098594   747.401692
##  [6]   116.314375  -293.701813   249.330045   158.920772  -258.179455
## [11]  -659.294321  -322.247876   215.188713  -341.871715     4.276662
## [16]   279.882382   301.395575   123.411382    67.083178  -285.374166

Data File Format