setwd("~/Documents/Dropbox/Research/Eric/study 2a replication")
all<-read.csv("study1+rep_ALLDVs.csv", header=T, sep=",")
all$betac <- all$beta - mean(all$beta)
all$deltac<- all$delta - mean(all$delta)
all$cond[all$cond1SS2LL3NO ==1]<-"SS"
all$cond[all$cond1SS2LL3NO ==2]<-"LL"
all$cond[all$cond1SS2LL3NO ==3]<-"no"
First use only intercept and time preference to predict choice of SS
summary(glm(SS~betac, data=all, family=binomial))
##
## Call:
## glm(formula = SS ~ betac, family = binomial, data = all)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.6246 -1.0269 -0.8507 1.1776 2.0078
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.1059 0.0634 -1.670 0.0949 .
## betac -4.6126 0.5330 -8.654 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1522.0 on 1100 degrees of freedom
## Residual deviance: 1422.8 on 1099 degrees of freedom
## AIC: 1426.8
##
## Number of Fisher Scoring iterations: 4
s1<-(glm(SS~betac, data=all, family=binomial))
library(nlme)
## Warning: package 'nlme' was built under R version 3.2.5
logLik(s1)
## 'log Lik.' -711.3866 (df=2)
library(lme4)
## Warning: package 'lme4' was built under R version 3.2.5
## Loading required package: Matrix
##
## Attaching package: 'lme4'
## The following object is masked from 'package:nlme':
##
## lmList
nest.reg <- glmer(SS ~ (1|cond)+betac, family = binomial, data = all)
coef(nest.reg) # this will give the estimated coeficients by condition
## $cond
## (Intercept) betac
## LL -0.38096863 -4.702969
## no -0.07243852 -4.702969
## SS 0.12606050 -4.702969
##
## attr(,"class")
## [1] "coef.mer"
?glmer
fixef(nest.reg) # this will give the model averaging over all conditions
## (Intercept) betac
## -0.1094669 -4.7029688
ranef(nest.reg) # the errors (specificity) at the condition level. If you sum fixef with ranef you will get coef results
## $cond
## (Intercept)
## LL -0.27150170
## no 0.03702841
## SS 0.23552743
library(arm)
## Loading required package: MASS
##
## arm (Version 1.8-6, built: 2015-7-7)
## Working directory is /Users/NeuroethicsMacBookPro11/Documents/Dropbox/research/Eric
display(nest.reg)
## glmer(formula = SS ~ (1 | cond) + betac, data = all, family = binomial)
## coef.est coef.se
## (Intercept) -0.11 0.15
## betac -4.70 0.54
##
## Error terms:
## Groups Name Std.Dev.
## cond (Intercept) 0.23
## Residual 1.00
## ---
## number of obs: 1101, groups: cond, 3
## AIC = 1419.6, DIC = 1398.6
## deviance = 1406.1
logLik(nest.reg)
## 'log Lik.' -706.7798 (df=3)
We can then test the simple model against the nested model
anova(s1, nest.reg, test='Chisq')
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: SS
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 1100 1522.0
## betac 1 99.21 1099 1422.8 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Now nest time preference in condition
nest.reg2 <- glmer(SS ~ (betac|cond), family = binomial, data = all)
coef(nest.reg2)
## $cond
## betac (Intercept)
## LL -4.519581 -0.3686238
## no -1.919259 -0.1740988
## SS -8.186344 0.2088735
##
## attr(,"class")
## [1] "coef.mer"
fixef(nest.reg2)
## (Intercept)
## -0.4199777
ranef(nest.reg2)
## $cond
## (Intercept) betac
## LL 0.05135394 -4.519581
## no 0.24587890 -1.919259
## SS 0.62885125 -8.186344
display(nest.reg2)
## glmer(formula = SS ~ (betac | cond), data = all, family = binomial)
## coef.est coef.se
## -0.42 0.28
##
## Error terms:
## Groups Name Std.Dev. Corr
## cond (Intercept) 0.41
## betac 5.67 -0.88
## Residual 1.00
## ---
## number of obs: 1101, groups: cond, 3
## AIC = 1413.2, DIC = 1364.6
## deviance = 1384.9
logLik(nest.reg2)
## 'log Lik.' -702.594 (df=4)
And test these 2 models against each other
anova(nest.reg, nest.reg2, test='Chisq')
## Data: all
## Models:
## nest.reg: SS ~ (1 | cond) + betac
## nest.reg2: SS ~ (betac | cond)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## nest.reg 3 1419.6 1434.6 -706.78 1413.6
## nest.reg2 4 1413.2 1433.2 -702.59 1405.2 8.3716 1 0.003811 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ryan0 <- glm(SS~betac,family=binomial,data=all)
ryan1 <- glm(SS~cond+betac,family=binomial,data=all)
ryan2 <- glm(SS~cond*betac,family=binomial,data=all)
anova(ryan0,ryan1,test="Chisq")
## Analysis of Deviance Table
##
## Model 1: SS ~ betac
## Model 2: SS ~ cond + betac
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 1099 1422.8
## 2 1097 1405.6 2 17.211 0.0001831 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ryan1,ryan2,test="Chisq")
## Analysis of Deviance Table
##
## Model 1: SS ~ cond + betac
## Model 2: SS ~ cond * betac
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 1097 1405.6
## 2 1095 1384.0 2 21.607 2.033e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1