Justin's Analysis

Data Munging

##  [1] "ID"                     "Condition"             
##  [3] "Site"                   "Coach"                 
##  [5] "Session"                "Morn_Aft"              
##  [7] "Day"                    "Age_month"             
##  [9] "Waist_Circumference_cm" "BMI"                   
## [11] "OrgSport"               "MVPA_ATHLETE_EV"       
## [13] "Min_MVPA_Ath_EV"        "VPA_ATHLETE_EV"        
## [15] "Min_VPA_Ath_EV"         "MPA_ATHLETE_EV"        
## [17] "Min_MPA_Ath_EV"         "SED_ATHLETE_EV"        
## [19] "Min_SED_Ath_EV"         "MVPA_COACH_TRO"        
## [21] "MIN_MVPA_COACH_TRO"     "VPA_COACH_TRO"         
## [23] "MIN_VPA_COACH_TRO"      "MPA_COACH_TRO"         
## [25] "MIN_MPA_COACH_TRO"      "SED_COACH_TRO"         
## [27] "MIN_SED_COACH_TRO"      "Management"            
## [29] "Knowledge"              "Promo_PA"              
## [31] "Demo_PA"                "Dis"                   
## [33] "MVPA_EV_CHANGE"         "VPA_EV_CHANGE"         
## [35] "MPA_EV_CHANGE"          "SED_EV_CHANGE"         
## [37] "MVPA_COACH_TRO_CHANGE"  "VPA_COACH_TRO_CHANGE"  
## [39] "MPA_COACH_TRO_CHANGE"   "SED_COACH_TRO_CHANGE"  
## [41] "Management_change"      "Knowledge_change"      
## [43] "Promo_PA_change"        "Demo_PA_change"        
## [45] "Dis_change"             "Man_Knowl_change"

Choosing a Model

## Compare linear to quadratic
## Data: dataExclude
## Models:
## TE_base: MVPA_ATHLETE_EV ~ Condition + baseline + Condition:baseline + 
## TE_base:     Session + (1 | ID) + (1 | Coach) + (1 | Site)
## TE: MVPA_ATHLETE_EV ~ Condition + baseline + Condition:baseline + 
## TE:     Session + I(Session^2) + (1 | ID) + (1 | Coach) + (1 | Site)
##         Df  AIC  BIC logLik deviance Chisq Chi Df Pr(>Chisq)   
## TE_base  9 3825 3864  -1903     3807                           
## TE      10 3816 3860  -1898     3796  10.6      1     0.0011 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Compare baseline vs session as treatment variable of interest
## Data: dataExclude
## Models:
## TE: MVPA_ATHLETE_EV ~ Condition + baseline + Condition:baseline + 
## TE:     Session + I(Session^2) + (1 | ID) + (1 | Coach) + (1 | Site)
## TE_1: MVPA_ATHLETE_EV ~ Condition + baseline + Session + I(Session^2) + 
## TE_1:     (1 | ID) + (1 | Coach) + (1 | Site) + Condition:baseline + 
## TE_1:     Condition:Session
## TE_2: MVPA_ATHLETE_EV ~ Condition + baseline + Session + I(Session^2) + 
## TE_2:     (1 | ID) + (1 | Coach) + (1 | Site) + Condition:baseline + 
## TE_2:     Condition:Session + Condition:baseline:Session
##      Df  AIC  BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## TE   10 3816 3860  -1898     3796                        
## TE_1 11 3818 3866  -1898     3796  0.00      1       0.98
## TE_2 12 3818 3870  -1897     3794  2.69      1       0.10
## Data: dataExclude
## Models:
## TE: MVPA_ATHLETE_EV ~ Condition + baseline + Condition:baseline + 
## TE:     Session + I(Session^2) + (1 | ID) + (1 | Coach) + (1 | Site)
## TE_2: MVPA_ATHLETE_EV ~ Condition + baseline + Session + I(Session^2) + 
## TE_2:     (1 | ID) + (1 | Coach) + (1 | Site) + Condition:baseline + 
## TE_2:     Condition:Session + Condition:baseline:Session
##      Df  AIC  BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## TE   10 3816 3860  -1898     3796                        
## TE_2 12 3818 3870  -1897     3794  2.69      2       0.26

Total Effects

I will using quasi-bayes simulation for confidence intervals (see Galman and Hills, 2008)

##        (Intercept)          Condition           baseline 
##            26.8055             0.2352            25.5013 
##            Session       I(Session^2) Condition:baseline 
##            -3.9013             0.2241           -13.7000
## Confidence Intervals
## -----------------------------------
##                         0.5%      2.5%    97.5%   99.5%
## (Intercept)         12.98826  16.94369  37.2252 39.5108
## Condition           -2.79589  -2.08619   2.4502  3.0846
## baseline            19.36811  20.38859  30.7433 32.2609
## Session             -6.37138  -5.98148  -1.8280 -1.3443
## I(Session^2)         0.04782   0.09054   0.3614  0.3968
## Condition:baseline -17.75197 -16.84303 -10.5833 -9.5742
##        (Intercept)          Condition           baseline 
##           17.72171            0.26752           25.32159 
##            Session       I(Session^2)         Management 
##           -3.95978            0.22577            0.14600 
##          Knowledge            Demo_PA           Promo_PA 
##            0.04263           -0.12606            0.24775 
##     MVPA_COACH_TRO Condition:baseline 
##            0.25537          -12.25455
## Confidence Intervals
## -----------------------------------
##                         0.5%      2.5%    97.5%   99.5%
## (Intercept)          1.93642   4.95321 30.25236 33.5966
## Condition           -2.85467  -2.13581  2.61086  3.4642
## baseline            17.46253  19.07084 32.03565 34.2883
## Session             -6.78857  -6.11862 -1.81952 -1.0805
## I(Session^2)         0.03845   0.08213  0.36949  0.4093
## Management          -0.14457  -0.09221  0.38539  0.4640
## Knowledge           -0.09152  -0.06014  0.13301  0.1659
## Demo_PA             -0.38554  -0.33080  0.07364  0.1246
## Promo_PA            -0.08879  -0.01713  0.48723  0.5635
## MVPA_COACH_TRO       0.10632   0.13988  0.37573  0.4027
## Condition:baseline -17.29238 -15.90451 -8.78486 -7.2383
## Total IE
## Point Estimate:  -1.401 
## CIs: -7.149 -6.204 3.378 4.952

Indirect Effects

Done equation by equation - equivilent to seemingly unrelated regression

## Results: Mangement
## -----------------------
##        (Intercept)          Condition           baseline 
##            11.4304             0.2534           -18.0873 
##            Session       I(Session^2) Condition:baseline 
##             4.3270            -0.2753             6.5948
## Confidence Intervals
## -----------------------------------
##                        0.5%     2.5%    97.5%    99.5%
## (Intercept)          8.9065   9.6300  13.2936  13.7440
## Condition           -0.6043  -0.4514   0.9730   1.2012
## baseline           -20.5852 -19.9602 -16.2292 -15.6886
## Session              3.3972   3.6120   5.0840   5.3667
## I(Session^2)        -0.3444  -0.3268  -0.2291  -0.2116
## Condition:baseline   4.9605   5.4302   7.7014   7.8918
## Results: Knowledge
## -----------------------
##        (Intercept)          Condition           baseline 
##            19.9848             1.2490           -11.3706 
##            Session       I(Session^2) Condition:baseline 
##             2.2159            -0.1481             5.5283
## Confidence Intervals
## -----------------------------------
##                          0.5%     2.5%    97.5%    99.5%
## (Intercept)         11.997665  14.0145 25.41674 27.40383
## Condition           -0.970703  -0.5217  2.93592  3.41690
## baseline           -17.215003 -16.1875 -7.05115 -6.23353
## Session              0.006251   0.5401  3.98207  4.43052
## I(Session^2)        -0.292297  -0.2651 -0.02876  0.01158
## Condition:baseline   2.096885   2.9629  8.37407  9.38584
## Results: Demo_PA
## -----------------------
##        (Intercept)          Condition           baseline 
##            8.79105            0.22304            4.99048 
##            Session       I(Session^2) Condition:baseline 
##            0.37032           -0.04814           -4.71777
## Confidence Intervals
## -----------------------------------
##                       0.5%    2.5%    97.5%    99.5%
## (Intercept)         3.5103  4.8397 12.80427 14.09212
## Condition          -0.9654 -0.6884  1.20835  1.56503
## baseline            1.7866  2.5104  7.56626  8.24396
## Session            -0.8738 -0.6074  1.33970  1.65997
## I(Session^2)       -0.1329 -0.1152  0.01902  0.03782
## Condition:baseline -6.7239 -6.1864 -3.28233 -2.68465
## Results: Promo_PA
## -----------------------
##        (Intercept)          Condition           baseline 
##           18.39170           -0.24385            9.67185 
##            Session       I(Session^2) Condition:baseline 
##           -1.56333            0.08988           -5.98779
## Confidence Intervals
## -----------------------------------
##                        0.5%     2.5%   97.5%   99.5%
## (Intercept)        14.67840 15.72859 21.1301 21.6091
## Condition          -1.30971 -1.03478  0.6124  0.8486
## baseline            6.87957  7.53514 11.7304 12.3630
## Session            -2.55235 -2.32427 -0.7921 -0.4773
## I(Session^2)        0.01779  0.03789  0.1423  0.1559
## Condition:baseline -7.81013 -7.34607 -4.8125 -4.4073
## Results: MVPA_COACH
## -----------------------
##        (Intercept)          Condition           baseline 
##           12.57561           -0.13269            6.62460 
##            Session       I(Session^2) Condition:baseline 
##           -1.20288            0.08826           -7.04944
## Confidence Intervals
## -----------------------------------
##                        0.5%      2.5%   97.5%   99.5%
## (Intercept)         6.07076  7.599435 17.8032 18.8340
## Condition          -1.95380 -1.536699  1.3330  1.8088
## baseline            2.10269  3.098076 10.3780 10.8770
## Session            -2.99353 -2.726896  0.2270  0.5074
## I(Session^2)       -0.03248 -0.007469  0.1876  0.2149
## Condition:baseline -9.97075 -9.257899 -4.7835 -4.0742
## Results: MVPA_ATHLETE_EV
## -----------------------
##        (Intercept)           baseline         Management 
##           17.72171           25.32159            0.14600 
##          Knowledge            Demo_PA           Promo_PA 
##            0.04263           -0.12606            0.24775 
##     MVPA_COACH_TRO            Session       I(Session^2) 
##            0.25537           -3.95978            0.22577 
##          Condition baseline:Condition 
##            0.26752          -12.25455
## Confidence Intervals
## -----------------------------------
##                         0.5%      2.5%    97.5%   99.5%
## (Intercept)          1.83855   4.98057 30.09535 33.7229
## baseline            16.43514  18.61208 32.58542 34.4226
## Management          -0.14566  -0.09020  0.39679  0.4881
## Knowledge           -0.08835  -0.05316  0.14095  0.1680
## Demo_PA             -0.38918  -0.33717  0.08948  0.1626
## Promo_PA            -0.08911  -0.02022  0.51120  0.6047
## MVPA_COACH_TRO       0.09013   0.13466  0.37617  0.4111
## Session             -6.93133  -6.22692 -1.64079 -0.8995
## I(Session^2)         0.02851   0.07092  0.37266  0.4137
## Condition           -3.00229  -2.11716  2.66843  3.3266
## baseline:Condition -17.54876 -16.17026 -8.43904 -7.6280

Calculate Indirect Effects

Again all done via Quasi-bayes

## Management
## Point Estimate:  0.9741 
## CIs: -0.9688 -0.5772 2.679 3.309
## Knowledge
## Point Estimate:  0.2468 
## CIs: -0.4936 -0.2955 0.8752 1.101
## Demo_PA
## Point Estimate:  0.5909 
## CIs: -0.7542 -0.4166 1.675 1.899
## Promo_PA
## Point Estimate:  -1.49 
## CIs: -3.63 -3.171 0.1266 0.5299
## MVPA_Coach
## Point Estimate:  -1.797 
## CIs: -3.221 -2.854 -0.8471 -0.5933
## Total Indirect Effect:
## Total IE
## Point Estimate:  -1.475 
## CIs: -4.25 -3.746 0.9647 1.574