try to make all the plot and see what happens.
source('smallHDD.r')
data2007 <- read.csv(file = 'newdata2007.csv', header = TRUE, sep = ",")
data2011 <- read.csv(file = 'newdata2011.csv', header = TRUE, sep = ",")
data2012 <- read.csv(file = 'newdata2013.csv', header = TRUE, sep = ",")
data2015 <- read.csv(file = 'newdata2015-1.csv', header = TRUE, sep = ",")
data2015.2 <- read.csv(file = 'newdata2015-2.csv', header = TRUE, sep = ",")
smallHDD(data2007, introDate = c('2015-03-22'), introYear = 2007)
## 2015-04-22
## 111
## 2015-04-05
## 94
## [1] 7818.27
## [1] 692.49
smallHDD(data2007, introDate = c('2015-05-06'), introYear = 2009)
## 2015-04-24
## 113
## 2015-01-23
## 22
## [1] 8536.53
## [1] 297.9
smallHDD(data2011, introDate = c('2015-05-13'), introYear = 2011)
## 2015-05-10
## 129
## 2015-02-10
## 40
## [1] 7302.5
## [1] 1035
smallHDD(data2012, introDate = c('2015-04-26'), introYear = 2012)
## 2015-03-19
## 77
## 2015-02-19
## 49
## [1] 7503.6
## [1] 727.83
smallHDD(data2012, introDate = c('2015-05-08'), introYear = 2013)
## 2015-05-15
## 134
## 2015-01-09
## 8
## [1] 9575.52
## [1] 554.43
smallHDD(data2012, introDate = c('2015-05-09'), introYear = 2014)
## 2015-05-25
## 144
## 2015-01-07
## 6
## [1] 9602.01
## [1] 418.02
smallHDD(data2015, introDate = c('2015-02-27'), introYear = 2015)
## 2015-04-12
## 101
## 2015-02-06
## 36
## [1] 7672.56
## [1] 503.34
smallHDD(data2015.2, introDate = c('2015-03-22'), introYear = 2015)
## 2015-04-12
## 101
## 2015-03-10
## 68
## [1] 6824.91
## [1] 819.63
We are looking at the date when HDD reaches to zero in the same year of introduction.
dat = read.csv(file = 'HDDsummary.csv', sep = ",", header = T)
reg1 = lm(dat$Date2~dat$Intro)
###exclude 2015-1
dat.without = dat[-7, ]
reg2 = lm(dat.without$Date2~dat.without$Intro)
plot(dat$Date2~dat$Intro)
abline(reg1, col = "blue")
abline(reg2, col = "red")
summary(reg1)
##
## Call:
## lm(formula = dat$Date2 ~ dat$Intro)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34.639 -19.303 2.753 14.955 37.713
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 26798.3966 5641.6237 4.75 0.00316 **
## dat$Intro -0.6240 0.3411 -1.83 0.11705
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25.96 on 6 degrees of freedom
## Multiple R-squared: 0.3581, Adjusted R-squared: 0.2511
## F-statistic: 3.348 on 1 and 6 DF, p-value: 0.117
summary(reg2)
##
## Call:
## lm(formula = dat.without$Date2 ~ dat.without$Intro)
##
## Residuals:
## 1 2 3 4 5 6 7
## 12.716 -3.383 23.312 11.194 -14.899 -15.657 -13.284
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37033.8934 5118.3073 7.236 0.000787 ***
## dat.without$Intro -1.2422 0.3093 -4.016 0.010157 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.24 on 5 degrees of freedom
## Multiple R-squared: 0.7634, Adjusted R-squared: 0.7161
## F-statistic: 16.13 on 1 and 5 DF, p-value: 0.01016