This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
setwd('C:/Users/praisons/Documents/CBA/Term3/SA2')
newspdata <- read.csv('NewspaperData.csv', header=TRUE, sep = ',')
head(newspdata)
## Newspaper daily sunday
## 1 Baltimore Sun 391.952 488.506
## 2 Boston Globe 516.981 798.298
## 3 Boston Herald 355.628 235.084
## 4 Charlotte Observer 238.555 299.451
## 5 Chicago Sun Times 537.780 559.093
## 6 Chicago Tribune 733.775 1133.249
plot(x = newspdata$daily,y=newspdata$sunday)
reg <- lm(newspdata$sunday~newspdata$daily)
abline(reg, col='green')
summary(reg)
##
## Call:
## lm(formula = newspdata$sunday ~ newspdata$daily)
##
## Residuals:
## Min 1Q Median 3Q Max
## -255.19 -55.57 -20.89 62.73 278.17
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.83563 35.80401 0.386 0.702
## newspdata$daily 1.33971 0.07075 18.935 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 109.4 on 32 degrees of freedom
## Multiple R-squared: 0.9181, Adjusted R-squared: 0.9155
## F-statistic: 358.5 on 1 and 32 DF, p-value: < 2.2e-16
plot(x = newspdata$daily,y=reg$residuals)
reg <- lm(reg$residuals~newspdata$daily)
abline(reg, col='green')
summary(reg)
##
## Call:
## lm(formula = reg$residuals ~ newspdata$daily)
##
## Residuals:
## Min 1Q Median 3Q Max
## -255.19 -55.57 -20.89 62.73 278.17
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.920e-15 3.580e+01 0 1
## newspdata$daily -1.838e-17 7.075e-02 0 1
##
## Residual standard error: 109.4 on 32 degrees of freedom
## Multiple R-squared: 3.467e-33, Adjusted R-squared: -0.03125
## F-statistic: 1.109e-31 on 1 and 32 DF, p-value: 1
#Log
plot(x = log10(newspdata$daily),y=newspdata$sunday)
reg <- lm(newspdata$sunday~log10(newspdata$daily))
abline(reg, col='green')
summary(reg)
##
## Call:
## lm(formula = newspdata$sunday ~ log10(newspdata$daily))
##
## Residuals:
## Min 1Q Median 3Q Max
## -334.71 -99.04 -9.73 66.58 440.31
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3039.0 309.5 -9.818 3.55e-11 ***
## log10(newspdata$daily) 1414.7 120.1 11.778 3.58e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 165.5 on 32 degrees of freedom
## Multiple R-squared: 0.8126, Adjusted R-squared: 0.8067
## F-statistic: 138.7 on 1 and 32 DF, p-value: 3.582e-13
plot(x = log10(newspdata$daily),y=reg$residuals)
reg <- lm(reg$residuals~log10(newspdata$daily))
abline(reg, col='green')
summary(reg)
##
## Call:
## lm(formula = reg$residuals ~ log10(newspdata$daily))
##
## Residuals:
## Min 1Q Median 3Q Max
## -334.71 -99.04 -9.73 66.58 440.31
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.831e-14 3.095e+02 0 1
## log10(newspdata$daily) 2.063e-14 1.201e+02 0 1
##
## Residual standard error: 165.5 on 32 degrees of freedom
## Multiple R-squared: 5.493e-33, Adjusted R-squared: -0.03125
## F-statistic: 1.758e-31 on 1 and 32 DF, p-value: 1
#Square root
plot(x = sqrt(newspdata$daily),y=newspdata$sunday)
reg <- lm(newspdata$sunday~sqrt(newspdata$daily))
abline(reg, col='green')
summary(reg)
##
## Call:
## lm(formula = newspdata$sunday ~ sqrt(newspdata$daily))
##
## Residuals:
## Min 1Q Median 3Q Max
## -290.778 -84.726 -0.811 71.632 274.859
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -613.144 79.912 -7.673 9.57e-09 ***
## sqrt(newspdata$daily) 60.399 3.849 15.690 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 129.6 on 32 degrees of freedom
## Multiple R-squared: 0.885, Adjusted R-squared: 0.8814
## F-statistic: 246.2 on 1 and 32 DF, p-value: < 2.2e-16
plot(x = sqrt(newspdata$daily),y=reg$residuals)
reg <- lm(reg$residuals~sqrt(newspdata$daily))
abline(reg, col='green')
summary(reg)
##
## Call:
## lm(formula = reg$residuals ~ sqrt(newspdata$daily))
##
## Residuals:
## Min 1Q Median 3Q Max
## -290.778 -84.726 -0.811 71.632 274.859
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.085e-14 7.991e+01 0 1
## sqrt(newspdata$daily) -4.219e-16 3.849e+00 0 1
##
## Residual standard error: 129.6 on 32 degrees of freedom
## Multiple R-squared: 1.357e-32, Adjusted R-squared: -0.03125
## F-statistic: 4.341e-31 on 1 and 32 DF, p-value: 1
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.