教育心理学会「学級規模と形成的フィードバック」


下ごしらえ

## 準備
setwd("C:/Users/koyo/Dropbox/R/140527_Kaken_FB")
library(xlsx)

## データ作成 もとのデータの*を空白に置換しておく(~*)
sho_a <- read.xlsx("sho_a.xlsx", sheetName = "sho_a")

### 必要なデータだけを取り出す
koku <- sho_a[c("schl", "sc_g_c", "Q1", "Q2", "Q31S1", "Q31S2", "Q32S1", "Q32S2", 
    "Q33S1", "Q33S2", "Q34S1", "Q34S2", "Q35S1", "Q35S2", "Q37", "Q38")]

### 学級別学級規模データの読み込み
cs <- read.xlsx("cs.xlsx", sheetName = "cs")

## データのマージ
koku_cs <- merge(koku, cs, by = "sc_g_c")

### 3,4年生の教諭の担任だけを取り出す
koku_cs <- subset(koku_cs, Q1 > 2)
koku_cs <- subset(koku_cs, Q37 == 2)

## 01データにする
library(memisc)
koku_cs$Q31S1 <- recode(koku_cs$Q31S1, 0 <- c(2, 3, 4), 1 <- c(1))
koku_cs$Q31S2 <- recode(koku_cs$Q31S2, 0 <- c(2, 3, 4), 1 <- c(1))
koku_cs$Q32S1 <- recode(koku_cs$Q32S1, 0 <- c(2, 3, 4), 1 <- c(1))
koku_cs$Q32S2 <- recode(koku_cs$Q32S2, 0 <- c(2, 3, 4), 1 <- c(1))
koku_cs$Q33S1 <- recode(koku_cs$Q33S1, 0 <- c(2, 3, 4), 1 <- c(1))
koku_cs$Q33S2 <- recode(koku_cs$Q33S2, 0 <- c(2, 3, 4), 1 <- c(1))
koku_cs$Q34S1 <- recode(koku_cs$Q34S1, 0 <- c(2, 3, 4), 1 <- c(1))
koku_cs$Q34S2 <- recode(koku_cs$Q34S2, 0 <- c(2, 3, 4), 1 <- c(1))
koku_cs$Q35S1 <- recode(koku_cs$Q35S1, 0 <- c(2, 3, 4), 1 <- c(1))
koku_cs$Q35S2 <- recode(koku_cs$Q35S2, 0 <- c(2, 3, 4), 1 <- c(1))

経験年数でサブセットを作る

### 10年以下
koku_nv <- subset(koku_cs, Q38 > 0 & Q38 < 11)
nrow(koku_nv)  #人数
## [1] 105
### 10年以上
koku_ex <- subset(koku_cs, Q38 > 10 & Q38 < 40)
nrow(koku_ex)  #人数
## [1] 397

対象学校数

nrow(table(koku_cs$schl))
## [1] 163

対象学級数(担任数)

nrow(koku_cs)
## [1] 502

MCMCロジット

library(MCMCpack)

経験年数10年以下

koku.nv.mc.res.Q31S1 <- MCMClogit(Q31S1 ~ size, data = koku_nv, burnin = 10000, 
    mcmc = 50000)
koku.nv.mc.res.Q31S2 <- MCMClogit(Q31S2 ~ size, data = koku_nv, burnin = 10000, 
    mcmc = 50000)
koku.nv.mc.res.Q32S1 <- MCMClogit(Q32S1 ~ size, data = koku_nv, burnin = 10000, 
    mcmc = 50000)
koku.nv.mc.res.Q32S2 <- MCMClogit(Q32S2 ~ size, data = koku_nv, burnin = 10000, 
    mcmc = 50000)
koku.nv.mc.res.Q33S1 <- MCMClogit(Q33S1 ~ size, data = koku_nv, burnin = 10000, 
    mcmc = 50000)
koku.nv.mc.res.Q33S2 <- MCMClogit(Q33S2 ~ size, data = koku_nv, burnin = 10000, 
    mcmc = 50000)
koku.nv.mc.res.Q34S1 <- MCMClogit(Q34S1 ~ size, data = koku_nv, burnin = 10000, 
    mcmc = 50000)
koku.nv.mc.res.Q34S2 <- MCMClogit(Q34S2 ~ size, data = koku_nv, burnin = 10000, 
    mcmc = 50000)
koku.nv.mc.res.Q35S1 <- MCMClogit(Q35S1 ~ size, data = koku_nv, burnin = 10000, 
    mcmc = 50000)
koku.nv.mc.res.Q35S2 <- MCMClogit(Q35S2 ~ size, data = koku_nv, burnin = 10000, 
    mcmc = 50000)

結果

summary(koku.nv.mc.res.Q31S1)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                Mean     SD Naive SE Time-series SE
## (Intercept)  1.9568 1.0697 0.004784       0.014474
## size        -0.0521 0.0407 0.000182       0.000552
## 
## 2. Quantiles for each variable:
## 
##                2.5%     25%     50%     75%  97.5%
## (Intercept) -0.0672  1.2339  1.9287  2.6434 4.1400
## size        -0.1343 -0.0784 -0.0514 -0.0246 0.0261
summary(koku.nv.mc.res.Q31S2)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##               Mean     SD Naive SE Time-series SE
## (Intercept)  3.461 1.2048 0.005388       0.016345
## size        -0.115 0.0452 0.000202       0.000623
## 
## 2. Quantiles for each variable:
## 
##               2.5%    25%    50%     75%   97.5%
## (Intercept)  1.232  2.620  3.423  4.2327  5.9684
## size        -0.208 -0.144 -0.113 -0.0834 -0.0306
summary(koku.nv.mc.res.Q32S1)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##              Mean     SD Naive SE Time-series SE
## (Intercept)  1.04 0.9559 0.004275       0.012683
## size        -0.04 0.0368 0.000165       0.000491
## 
## 2. Quantiles for each variable:
## 
##               2.5%     25%     50%     75%  97.5%
## (Intercept) -0.810  0.3909  1.0250  1.6683 2.9429
## size        -0.113 -0.0643 -0.0398 -0.0151 0.0313
summary(koku.nv.mc.res.Q32S2)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                Mean    SD Naive SE Time-series SE
## (Intercept)  1.8173 1.010 0.004519       0.013786
## size        -0.0769 0.039 0.000174       0.000533
## 
## 2. Quantiles for each variable:
## 
##               2.5%    25%     50%     75%   97.5%
## (Intercept) -0.143  1.135  1.8085  2.4742  3.8543
## size        -0.156 -0.102 -0.0764 -0.0506 -0.0021
summary(koku.nv.mc.res.Q33S1)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                Mean    SD Naive SE Time-series SE
## (Intercept) 1.30546 1.188 0.005312       0.016125
## size        0.00718 0.046 0.000206       0.000624
## 
## 2. Quantiles for each variable:
## 
##                2.5%     25%     50%    75%  97.5%
## (Intercept) -0.9387  0.4840 1.27580 2.0789 3.7421
## size        -0.0852 -0.0233 0.00775 0.0386 0.0958
summary(koku.nv.mc.res.Q33S2)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##               Mean     SD Naive SE Time-series SE
## (Intercept)  2.691 1.2523  0.00560       0.017001
## size        -0.058 0.0469  0.00021       0.000637
## 
## 2. Quantiles for each variable:
## 
##               2.5%    25%     50%     75%  97.5%
## (Intercept)  0.383  1.819  2.6501  3.5047 5.2635
## size        -0.152 -0.089 -0.0566 -0.0254 0.0308
summary(koku.nv.mc.res.Q34S1)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                Mean     SD Naive SE Time-series SE
## (Intercept)  2.4684 1.2494  0.00559       0.017134
## size        -0.0452 0.0471  0.00021       0.000644
## 
## 2. Quantiles for each variable:
## 
##               2.5%     25%     50%     75% 97.5%
## (Intercept)  0.169  1.6052  2.4196  3.2686 5.084
## size        -0.141 -0.0757 -0.0442 -0.0129 0.043
summary(koku.nv.mc.res.Q34S2)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##               Mean     SD Naive SE Time-series SE
## (Intercept)  2.535 1.0556 0.004721       0.014180
## size        -0.107 0.0407 0.000182       0.000548
## 
## 2. Quantiles for each variable:
## 
##               2.5%    25%    50%     75% 97.5%
## (Intercept)  0.550  1.809  2.500  3.2264  4.67
## size        -0.189 -0.133 -0.105 -0.0789 -0.03
summary(koku.nv.mc.res.Q35S1)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                Mean     SD Naive SE Time-series SE
## (Intercept)  0.8524 0.9934  0.00444       0.013436
## size        -0.0107 0.0381  0.00017       0.000515
## 
## 2. Quantiles for each variable:
## 
##                2.5%     25%     50%    75%  97.5%
## (Intercept) -1.0352  0.1818  0.8316 1.5070 2.8545
## size        -0.0868 -0.0359 -0.0102 0.0152 0.0632
summary(koku.nv.mc.res.Q35S2)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                Mean     SD Naive SE Time-series SE
## (Intercept)  0.4978 0.9686 0.004332       0.013119
## size        -0.0409 0.0377 0.000169       0.000516
## 
## 2. Quantiles for each variable:
## 
##               2.5%     25%     50%     75%  97.5%
## (Intercept) -1.398 -0.1508  0.4984  1.1377 2.4032
## size        -0.115 -0.0661 -0.0406 -0.0153 0.0327

90%信用区間を表示

quantile(koku.nv.mc.res.Q31S1[, 2], c(0.05, 0.95))
##       5%      95% 
## -0.12024  0.01364
quantile(koku.nv.mc.res.Q31S2[, 2], c(0.05, 0.95))
##       5%      95% 
## -0.19174 -0.04398
quantile(koku.nv.mc.res.Q32S1[, 2], c(0.05, 0.95))
##       5%      95% 
## -0.10146  0.01966
quantile(koku.nv.mc.res.Q32S2[, 2], c(0.05, 0.95))
##      5%     95% 
## -0.1419 -0.0135
quantile(koku.nv.mc.res.Q33S1[, 2], c(0.05, 0.95))
##       5%      95% 
## -0.07014  0.08167
quantile(koku.nv.mc.res.Q33S2[, 2], c(0.05, 0.95))
##       5%      95% 
## -0.13782  0.01617
quantile(koku.nv.mc.res.Q34S1[, 2], c(0.05, 0.95))
##       5%      95% 
## -0.12573  0.02981
quantile(koku.nv.mc.res.Q34S2[, 2], c(0.05, 0.95))
##       5%      95% 
## -0.17510 -0.04161
quantile(koku.nv.mc.res.Q35S1[, 2], c(0.05, 0.95))
##       5%      95% 
## -0.07422  0.05172
quantile(koku.nv.mc.res.Q35S2[, 2], c(0.05, 0.95))
##       5%      95% 
## -0.10288  0.02068

gewake指標を出す

geweke.diag(koku.nv.mc.res.Q31S1)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##      0.1102      0.5105
geweke.diag(koku.nv.mc.res.Q31S2)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##     -0.4235      0.8281
geweke.diag(koku.nv.mc.res.Q32S1)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##     -0.5045      1.1181
geweke.diag(koku.nv.mc.res.Q32S2)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##      0.8343     -0.4143
geweke.diag(koku.nv.mc.res.Q33S1)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##      0.7486     -0.2844
geweke.diag(koku.nv.mc.res.Q33S2)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##     0.35943     0.02435
geweke.diag(koku.nv.mc.res.Q34S1)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##     0.49882    -0.02645
geweke.diag(koku.nv.mc.res.Q34S2)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##      0.4276      0.0242
geweke.diag(koku.nv.mc.res.Q35S1)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##     0.49602    -0.06841
geweke.diag(koku.nv.mc.res.Q35S2)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##     0.40278     0.03849

経験年数11年以上

koku.ex.mc.res.Q31S1 <- MCMClogit(Q31S1 ~ size, data = koku_ex, burnin = 10000, 
    mcmc = 50000)
koku.ex.mc.res.Q31S2 <- MCMClogit(Q31S2 ~ size, data = koku_ex, burnin = 10000, 
    mcmc = 50000)
koku.ex.mc.res.Q32S1 <- MCMClogit(Q32S1 ~ size, data = koku_ex, burnin = 10000, 
    mcmc = 50000)
koku.ex.mc.res.Q32S2 <- MCMClogit(Q32S2 ~ size, data = koku_ex, burnin = 10000, 
    mcmc = 50000)
koku.ex.mc.res.Q33S1 <- MCMClogit(Q33S1 ~ size, data = koku_ex, burnin = 10000, 
    mcmc = 50000)
koku.ex.mc.res.Q33S2 <- MCMClogit(Q33S2 ~ size, data = koku_ex, burnin = 10000, 
    mcmc = 50000)
koku.ex.mc.res.Q34S1 <- MCMClogit(Q34S1 ~ size, data = koku_ex, burnin = 10000, 
    mcmc = 50000)
koku.ex.mc.res.Q34S2 <- MCMClogit(Q34S2 ~ size, data = koku_ex, burnin = 10000, 
    mcmc = 50000)
koku.ex.mc.res.Q35S1 <- MCMClogit(Q35S1 ~ size, data = koku_ex, burnin = 10000, 
    mcmc = 50000)
koku.ex.mc.res.Q35S2 <- MCMClogit(Q35S2 ~ size, data = koku_ex, burnin = 10000, 
    mcmc = 50000)

結果

summary(koku.ex.mc.res.Q31S1)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                Mean     SD Naive SE Time-series SE
## (Intercept)  1.2362 0.4025 1.80e-03       0.005403
## size        -0.0204 0.0154 6.89e-05       0.000208
## 
## 2. Quantiles for each variable:
## 
##                2.5%     25%     50%   75%  97.5%
## (Intercept)  0.4529  0.9632  1.2326  1.50 2.0340
## size        -0.0509 -0.0306 -0.0204 -0.01 0.0095
summary(koku.ex.mc.res.Q31S2)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                Mean     SD Naive SE Time-series SE
## (Intercept)  0.6515 0.3697 1.65e-03       0.004955
## size        -0.0144 0.0143 6.39e-05       0.000192
## 
## 2. Quantiles for each variable:
## 
##                2.5%     25%     50%      75%  97.5%
## (Intercept) -0.0745  0.4011  0.6491  0.89876 1.3830
## size        -0.0425 -0.0241 -0.0143 -0.00494 0.0137
summary(koku.ex.mc.res.Q32S1)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                Mean     SD Naive SE Time-series SE
## (Intercept)  0.2876 0.3650 1.63e-03       0.004898
## size        -0.0056 0.0141 6.32e-05       0.000192
## 
## 2. Quantiles for each variable:
## 
##                2.5%     25%      50%     75%  97.5%
## (Intercept) -0.4322  0.0426  0.28649 0.53143 1.0091
## size        -0.0334 -0.0150 -0.00558 0.00391 0.0222
summary(koku.ex.mc.res.Q32S2)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                 Mean     SD Naive SE Time-series SE
## (Intercept) -0.05222 0.3635 1.63e-03       0.004848
## size         0.00274 0.0141 6.29e-05       0.000189
## 
## 2. Quantiles for each variable:
## 
##                2.5%     25%      50%    75%  97.5%
## (Intercept) -0.7676 -0.2948 -0.05008 0.1918 0.6594
## size        -0.0246 -0.0067  0.00262 0.0121 0.0303
summary(koku.ex.mc.res.Q33S1)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                Mean     SD Naive SE Time-series SE
## (Intercept) 1.33087 0.4669 2.09e-03       0.006349
## size        0.00899 0.0183 8.18e-05       0.000251
## 
## 2. Quantiles for each variable:
## 
##               2.5%     25%     50%    75%  97.5%
## (Intercept)  0.423  1.0180 1.32179 1.6412 2.2601
## size        -0.027 -0.0032 0.00891 0.0212 0.0448
summary(koku.ex.mc.res.Q33S2)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                Mean     SD Naive SE Time-series SE
## (Intercept) 1.19101 0.4383 1.96e-03       0.005956
## size        0.00665 0.0171 7.64e-05       0.000233
## 
## 2. Quantiles for each variable:
## 
##                2.5%      25%     50%    75%  97.5%
## (Intercept)  0.3424  0.89149 1.18605 1.4818 2.0658
## size        -0.0271 -0.00487 0.00675 0.0182 0.0401
summary(koku.ex.mc.res.Q34S1)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                Mean     SD Naive SE Time-series SE
## (Intercept)  1.9963 0.4746  0.00212       0.006397
## size        -0.0289 0.0179  0.00008       0.000244
## 
## 2. Quantiles for each variable:
## 
##                2.5%     25%     50%     75%   97.5%
## (Intercept)  1.0911  1.6737  1.9849  2.3111 2.94868
## size        -0.0645 -0.0407 -0.0287 -0.0169 0.00554
summary(koku.ex.mc.res.Q34S2)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                  Mean    SD Naive SE Time-series SE
## (Intercept)  0.040618 0.363 1.63e-03       0.004738
## size        -0.000998 0.014 6.28e-05       0.000188
## 
## 2. Quantiles for each variable:
## 
##                2.5%     25%       50%     75%  97.5%
## (Intercept) -0.6750 -0.2006  0.044937 0.28368 0.7515
## size        -0.0283 -0.0105 -0.000937 0.00837 0.0268
summary(koku.ex.mc.res.Q35S1)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                Mean     SD Naive SE Time-series SE
## (Intercept)  1.6414 0.4596 2.06e-03       0.006142
## size        -0.0114 0.0176 7.86e-05       0.000236
## 
## 2. Quantiles for each variable:
## 
##                2.5%    25%     50%      75%  97.5%
## (Intercept)  0.7640  1.330  1.6355 1.943153 2.5667
## size        -0.0462 -0.023 -0.0112 0.000512 0.0228
summary(koku.ex.mc.res.Q35S2)
## 
## Iterations = 10001:60000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 50000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                 Mean    SD Naive SE Time-series SE
## (Intercept)  0.03974 0.362 1.62e-03        0.00488
## size        -0.00218 0.014 6.26e-05        0.00019
## 
## 2. Quantiles for each variable:
## 
##                2.5%     25%      50%     75%  97.5%
## (Intercept) -0.6724 -0.2054  0.04349 0.28233 0.7461
## size        -0.0295 -0.0115 -0.00236 0.00729 0.0252

90%信用区間を表示

quantile(koku.ex.mc.res.Q31S1[, 2], c(0.05, 0.95))
##        5%       95% 
## -0.045950  0.004905
quantile(koku.ex.mc.res.Q31S2[, 2], c(0.05, 0.95))
##        5%       95% 
## -0.037962  0.009239
quantile(koku.ex.mc.res.Q32S1[, 2], c(0.05, 0.95))
##       5%      95% 
## -0.02902  0.01788
quantile(koku.ex.mc.res.Q32S2[, 2], c(0.05, 0.95))
##       5%      95% 
## -0.02034  0.02606
quantile(koku.ex.mc.res.Q33S1[, 2], c(0.05, 0.95))
##       5%      95% 
## -0.02109  0.03912
quantile(koku.ex.mc.res.Q33S2[, 2], c(0.05, 0.95))
##       5%      95% 
## -0.02144  0.03481
quantile(koku.ex.mc.res.Q34S1[, 2], c(0.05, 0.95))
##         5%        95% 
## -0.0586801  0.0005863
quantile(koku.ex.mc.res.Q34S2[, 2], c(0.05, 0.95))
##       5%      95% 
## -0.02412  0.02224
quantile(koku.ex.mc.res.Q35S1[, 2], c(0.05, 0.95))
##       5%      95% 
## -0.04052  0.01741
quantile(koku.ex.mc.res.Q35S2[, 2], c(0.05, 0.95))
##       5%      95% 
## -0.02514  0.02108

gewake指標を出す

geweke.diag(koku.ex.mc.res.Q31S1)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##    0.719387   -0.009188
geweke.diag(koku.ex.mc.res.Q31S2)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##      0.2216      0.3989
geweke.diag(koku.ex.mc.res.Q32S1)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##      0.3149      0.5270
geweke.diag(koku.ex.mc.res.Q32S2)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##      0.3852      0.2506
geweke.diag(koku.ex.mc.res.Q33S1)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##    0.806973   -0.001365
geweke.diag(koku.ex.mc.res.Q33S2)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##      0.5903      0.1485
geweke.diag(koku.ex.mc.res.Q34S1)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##     -0.1087      0.8898
geweke.diag(koku.ex.mc.res.Q34S2)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##     0.47798     0.05648
geweke.diag(koku.ex.mc.res.Q35S1)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##      0.5621      0.1723
geweke.diag(koku.ex.mc.res.Q35S2)
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
## (Intercept)        size 
##      0.2064      0.6490

経験年数で比較したグラフ

非計画・個別

plot(koku_nv$size, xlim = c(0, 40), koku_nv$Q31S2, pch = "●", xaxt = "n", yaxt = "n", 
    xlab = "", ylab = "", axes = F)

par(new = T)

plot(koku_ex$size, xlim = c(0, 40), koku_ex$Q31S2, pch = "×", xaxt = "n", yaxt = "n", 
    xlab = "学級規模", ylab = "実施状況", axes = F)
axis(side = 1, at = seq(0, 40, 5), cex.axis = 0.8)
axis(side = 2, at = seq(0, 1, 1), labels = c("全く~半分くらい", "いつも・ほとんど"), 
    cex.axis = 0.8)

# ロジスティック曲線のための値取り出し
i.koku.nv.res.Q31S2 <- mean(koku.nv.mc.res.Q31S2[, 1])
s.koku.nv.res.Q31S2 <- mean(koku.nv.mc.res.Q31S2[, 2])

i.koku.ex.res.Q31S2 <- mean(koku.ex.mc.res.Q31S2[, 1])
s.koku.ex.res.Q31S2 <- mean(koku.ex.mc.res.Q31S2[, 2])

# 曲線に流し込むx軸範囲と区切り
x <- seq(0, 40, 1)

# ロジスティック曲線の式
y.koku.nv.res.Q31S2 <- 1/(1 + exp(-i.koku.nv.res.Q31S2 - s.koku.nv.res.Q31S2 * 
    x))
y.koku.ex.res.Q31S2 <- 1/(1 + exp(-i.koku.ex.res.Q31S2 - s.koku.ex.res.Q31S2 * 
    x))

# 曲線描画
lines(x, y.koku.nv.res.Q31S2, lty = 1)
lines(x, y.koku.ex.res.Q31S2, lty = 2)

# 凡例
legend(3, 0.3, c("10年以下", "", "", "11年以上", ""), pch = c("●", "", "", 
    "×", ""), lty = c(0, 1, 0, 0, 2), bty = "n")

plot of chunk unnamed-chunk-14

非計画・グループワーク

plot(koku_nv$size, xlim = c(0, 40), koku_nv$Q32S2, pch = "●", xaxt = "n", yaxt = "n", 
    xlab = "", ylab = "", axes = F)

par(new = T)

plot(koku_ex$size, xlim = c(0, 40), koku_ex$Q32S2, pch = "×", xaxt = "n", yaxt = "n", 
    xlab = "学級規模", ylab = "実施状況", axes = F)
axis(side = 1, at = seq(0, 40, 5), cex.axis = 0.8)
axis(side = 2, at = seq(0, 1, 1), labels = c("全く~半分くらい", "いつも・ほとんど"), 
    cex.axis = 0.8)

# ロジスティック曲線のための値取り出し
i.koku.nv.res.Q32S2 <- mean(koku.nv.mc.res.Q32S2[, 1])
s.koku.nv.res.Q32S2 <- mean(koku.nv.mc.res.Q32S2[, 2])

i.koku.ex.res.Q32S2 <- mean(koku.ex.mc.res.Q32S2[, 1])
s.koku.ex.res.Q32S2 <- mean(koku.ex.mc.res.Q32S2[, 2])

# 曲線に流し込むx軸範囲と区切り
x <- seq(0, 40, 1)

# ロジスティック曲線の式
y.koku.nv.res.Q32S2 <- 1/(1 + exp(-i.koku.nv.res.Q32S2 - s.koku.nv.res.Q32S2 * 
    x))
y.koku.ex.res.Q32S2 <- 1/(1 + exp(-i.koku.ex.res.Q32S2 - s.koku.ex.res.Q32S2 * 
    x))

# 曲線描画
lines(x, y.koku.nv.res.Q32S2, lty = 1)
lines(x, y.koku.ex.res.Q32S2, lty = 2)

# 凡例
legend(3, 0.3, c("10年以下", "", "", "11年以上", ""), pch = c("●", "", "", 
    "×", ""), lty = c(0, 1, 0, 0, 2), bty = "n")

plot of chunk unnamed-chunk-15

非計画・全体

plot(koku_nv$size, xlim = c(0, 40), koku_nv$Q33S2, pch = "●", xaxt = "n", yaxt = "n", 
    xlab = "", ylab = "", axes = F)

par(new = T)

plot(koku_ex$size, xlim = c(0, 40), koku_ex$Q33S2, pch = "×", xaxt = "n", yaxt = "n", 
    xlab = "学級規模", ylab = "実施状況", axes = F)
axis(side = 1, at = seq(0, 40, 5), cex.axis = 0.8)
axis(side = 2, at = seq(0, 1, 1), labels = c("全く~半分くらい", "いつも・ほとんど"), 
    cex.axis = 0.8)

# ロジスティック曲線のための値取り出し
i.koku.nv.res.Q33S2 <- mean(koku.nv.mc.res.Q33S2[, 1])
s.koku.nv.res.Q33S2 <- mean(koku.nv.mc.res.Q33S2[, 2])

i.koku.ex.res.Q33S2 <- mean(koku.ex.mc.res.Q33S2[, 1])
s.koku.ex.res.Q33S2 <- mean(koku.ex.mc.res.Q33S2[, 2])

# 曲線に流し込むx軸範囲と区切り
x <- seq(0, 40, 1)

# ロジスティック曲線の式
y.koku.nv.res.Q33S2 <- 1/(1 + exp(-i.koku.nv.res.Q33S2 - s.koku.nv.res.Q33S2 * 
    x))
y.koku.ex.res.Q33S2 <- 1/(1 + exp(-i.koku.ex.res.Q33S2 - s.koku.ex.res.Q33S2 * 
    x))

# 曲線描画
lines(x, y.koku.nv.res.Q33S2, lty = 1)
lines(x, y.koku.ex.res.Q33S2, lty = 2)

# 凡例
legend(3, 0.3, c("10年以下", "", "", "11年以上", ""), pch = c("●", "", "", 
    "×", ""), lty = c(0, 1, 0, 0, 2), bty = "n")

plot of chunk unnamed-chunk-16

非計画・宿題

plot(koku_nv$size, xlim = c(0, 40), koku_nv$Q34S2, pch = "●", xaxt = "n", yaxt = "n", 
    xlab = "", ylab = "", axes = F)

par(new = T)

plot(koku_ex$size, xlim = c(0, 40), koku_ex$Q34S2, pch = "×", xaxt = "n", yaxt = "n", 
    xlab = "学級規模", ylab = "実施状況", axes = F)
axis(side = 1, at = seq(0, 40, 5), cex.axis = 0.8)
axis(side = 2, at = seq(0, 1, 1), labels = c("全く~半分くらい", "いつも・ほとんど"), 
    cex.axis = 0.8)

# ロジスティック曲線のための値取り出し
i.koku.nv.res.Q34S2 <- mean(koku.nv.mc.res.Q34S2[, 1])
s.koku.nv.res.Q34S2 <- mean(koku.nv.mc.res.Q34S2[, 2])

i.koku.ex.res.Q34S2 <- mean(koku.ex.mc.res.Q34S2[, 1])
s.koku.ex.res.Q34S2 <- mean(koku.ex.mc.res.Q34S2[, 2])

# 曲線に流し込むx軸範囲と区切り
x <- seq(0, 40, 1)

# ロジスティック曲線の式
y.koku.nv.res.Q34S2 <- 1/(1 + exp(-i.koku.nv.res.Q34S2 - s.koku.nv.res.Q34S2 * 
    x))
y.koku.ex.res.Q34S2 <- 1/(1 + exp(-i.koku.ex.res.Q34S2 - s.koku.ex.res.Q34S2 * 
    x))

# 曲線描画
lines(x, y.koku.nv.res.Q34S2, lty = 1)
lines(x, y.koku.ex.res.Q34S2, lty = 2)

# 凡例
legend(3, 0.3, c("10年以下", "", "", "11年以上", ""), pch = c("●", "", "", 
    "×", ""), lty = c(0, 1, 0, 0, 2), bty = "n")

plot of chunk unnamed-chunk-17

非計画・小テスト

plot(koku_nv$size, xlim = c(0, 40), koku_nv$Q35S2, pch = "●", xaxt = "n", yaxt = "n", 
    xlab = "", ylab = "", axes = F)

par(new = T)

plot(koku_ex$size, xlim = c(0, 40), koku_ex$Q35S2, pch = "×", xaxt = "n", yaxt = "n", 
    xlab = "学級規模", ylab = "実施状況", axes = F)
axis(side = 1, at = seq(0, 40, 5), cex.axis = 0.8)
axis(side = 2, at = seq(0, 1, 1), labels = c("全く~半分くらい", "いつも・ほとんど"), 
    cex.axis = 0.8)

# ロジスティック曲線のための値取り出し
i.koku.nv.res.Q35S2 <- mean(koku.nv.mc.res.Q35S2[, 1])
s.koku.nv.res.Q35S2 <- mean(koku.nv.mc.res.Q35S2[, 2])

i.koku.ex.res.Q35S2 <- mean(koku.ex.mc.res.Q35S2[, 1])
s.koku.ex.res.Q35S2 <- mean(koku.ex.mc.res.Q35S2[, 2])

# 曲線に流し込むx軸範囲と区切り
x <- seq(0, 40, 1)

# ロジスティック曲線の式
y.koku.nv.res.Q35S2 <- 1/(1 + exp(-i.koku.nv.res.Q35S2 - s.koku.nv.res.Q35S2 * 
    x))
y.koku.ex.res.Q35S2 <- 1/(1 + exp(-i.koku.ex.res.Q35S2 - s.koku.ex.res.Q35S2 * 
    x))

# 曲線描画
lines(x, y.koku.nv.res.Q35S2, lty = 1)
lines(x, y.koku.ex.res.Q35S2, lty = 2)

# 凡例
legend(3, 0.3, c("10年以下", "", "", "11年以上", ""), pch = c("●", "", "", 
    "×", ""), lty = c(0, 1, 0, 0, 2), bty = "n")

plot of chunk unnamed-chunk-18

10年以下の教員について正誤と理由で比較したグラフ

非計画・個別

plot(koku_nv$size, xlim = c(0, 40), koku_nv$Q31S2, pch = "●", col = 8, xaxt = "n", 
    yaxt = "n", xlab = "", ylab = "", axes = F)

par(new = T)

plot(koku_nv$size, xlim = c(0, 40), koku_nv$Q31S1, pch = "×", xaxt = "n", yaxt = "n", 
    xlab = "学級規模", ylab = "実施状況", axes = F)
axis(side = 1, at = seq(0, 40, 5), cex.axis = 0.8)
axis(side = 2, at = seq(0, 1, 1), labels = c("全く~半分くらい", "いつも・ほとんど"), 
    cex.axis = 0.8)

# ロジスティック曲線のための値取り出し
i.koku.nv.res.Q31S2 <- mean(koku.nv.mc.res.Q31S2[, 1])
s.koku.nv.res.Q31S2 <- mean(koku.nv.mc.res.Q31S2[, 2])

i.koku.nv.res.Q31S1 <- mean(koku.nv.mc.res.Q31S1[, 1])
s.koku.nv.res.Q31S1 <- mean(koku.nv.mc.res.Q31S1[, 2])

# 曲線に流し込むx軸範囲と区切り
x <- seq(0, 40, 1)

# ロジスティック曲線の式
y.koku.nv.res.Q31S2 <- 1/(1 + exp(-i.koku.nv.res.Q31S2 - s.koku.nv.res.Q31S2 * 
    x))
y.koku.nv.res.Q31S1 <- 1/(1 + exp(-i.koku.nv.res.Q31S1 - s.koku.nv.res.Q31S1 * 
    x))

# 曲線描画
lines(x, y.koku.nv.res.Q31S2, lty = 1)
lines(x, y.koku.nv.res.Q31S1, lty = 2)

# 凡例
legend(3, 0.3, c("理由・考え方", "", "", "正誤", ""), pch = c("●", "", "", 
    "×", ""), lty = c(0, 1, 0, 0, 2), bty = "n")

plot of chunk unnamed-chunk-19

非計画・グループワーク

plot(koku_nv$size, xlim = c(0, 40), koku_nv$Q32S2, pch = "●", col = 8, xaxt = "n", 
    yaxt = "n", xlab = "", ylab = "", axes = F)

par(new = T)

plot(koku_nv$size, xlim = c(0, 40), koku_nv$Q32S1, pch = "×", xaxt = "n", yaxt = "n", 
    xlab = "学級規模", ylab = "実施状況", axes = F)
axis(side = 1, at = seq(0, 40, 5), cex.axis = 0.8)
axis(side = 2, at = seq(0, 1, 1), labels = c("全く~半分くらい", "いつも・ほとんど"), 
    cex.axis = 0.8)

# ロジスティック曲線のための値取り出し
i.koku.nv.res.Q32S2 <- mean(koku.nv.mc.res.Q32S2[, 1])
s.koku.nv.res.Q32S2 <- mean(koku.nv.mc.res.Q32S2[, 2])

i.koku.nv.res.Q32S1 <- mean(koku.nv.mc.res.Q32S1[, 1])
s.koku.nv.res.Q32S1 <- mean(koku.nv.mc.res.Q32S1[, 2])

# 曲線に流し込むx軸範囲と区切り
x <- seq(0, 40, 1)

# ロジスティック曲線の式
y.koku.nv.res.Q32S2 <- 1/(1 + exp(-i.koku.nv.res.Q32S2 - s.koku.nv.res.Q32S2 * 
    x))
y.koku.nv.res.Q32S1 <- 1/(1 + exp(-i.koku.nv.res.Q32S1 - s.koku.nv.res.Q32S1 * 
    x))

# 曲線描画
lines(x, y.koku.nv.res.Q32S2, lty = 1)
lines(x, y.koku.nv.res.Q32S1, lty = 2)

# 凡例
legend(3, 0.3, c("理由・考え方", "", "", "正誤", ""), pch = c("●", "", "", 
    "×", ""), lty = c(0, 1, 0, 0, 2), bty = "n")

plot of chunk unnamed-chunk-20

非計画・全体

plot(koku_nv$size, xlim = c(0, 40), koku_nv$Q33S2, pch = "●", col = 8, xaxt = "n", 
    yaxt = "n", xlab = "", ylab = "", axes = F)

par(new = T)

plot(koku_nv$size, xlim = c(0, 40), koku_nv$Q33S1, pch = "×", xaxt = "n", yaxt = "n", 
    xlab = "学級規模", ylab = "実施状況", axes = F)
axis(side = 1, at = seq(0, 40, 5), cex.axis = 0.8)
axis(side = 2, at = seq(0, 1, 1), labels = c("全く~半分くらい", "いつも・ほとんど"), 
    cex.axis = 0.8)

# ロジスティック曲線のための値取り出し
i.koku.nv.res.Q33S2 <- mean(koku.nv.mc.res.Q33S2[, 1])
s.koku.nv.res.Q33S2 <- mean(koku.nv.mc.res.Q33S2[, 2])

i.koku.nv.res.Q33S1 <- mean(koku.nv.mc.res.Q33S1[, 1])
s.koku.nv.res.Q33S1 <- mean(koku.nv.mc.res.Q33S1[, 2])

# 曲線に流し込むx軸範囲と区切り
x <- seq(0, 40, 1)

# ロジスティック曲線の式
y.koku.nv.res.Q33S2 <- 1/(1 + exp(-i.koku.nv.res.Q33S2 - s.koku.nv.res.Q33S2 * 
    x))
y.koku.nv.res.Q33S1 <- 1/(1 + exp(-i.koku.nv.res.Q33S1 - s.koku.nv.res.Q33S1 * 
    x))

# 曲線描画
lines(x, y.koku.nv.res.Q33S2, lty = 1)
lines(x, y.koku.nv.res.Q33S1, lty = 2)

# 凡例
legend(3, 0.3, c("理由・考え方", "", "", "正誤", ""), pch = c("●", "", "", 
    "×", ""), lty = c(0, 1, 0, 0, 2), bty = "n")

plot of chunk unnamed-chunk-21

非計画・宿題

plot(koku_nv$size, xlim = c(0, 40), koku_nv$Q34S2, pch = "●", col = 8, xaxt = "n", 
    yaxt = "n", xlab = "", ylab = "", axes = F)

par(new = T)

plot(koku_nv$size, xlim = c(0, 40), koku_nv$Q34S1, pch = "×", xaxt = "n", yaxt = "n", 
    xlab = "学級規模", ylab = "実施状況", axes = F)
axis(side = 1, at = seq(0, 40, 5), cex.axis = 0.8)
axis(side = 2, at = seq(0, 1, 1), labels = c("全く~半分くらい", "いつも・ほとんど"), 
    cex.axis = 0.8)

# ロジスティック曲線のための値取り出し
i.koku.nv.res.Q34S2 <- mean(koku.nv.mc.res.Q34S2[, 1])
s.koku.nv.res.Q34S2 <- mean(koku.nv.mc.res.Q34S2[, 2])

i.koku.nv.res.Q34S1 <- mean(koku.nv.mc.res.Q34S1[, 1])
s.koku.nv.res.Q34S1 <- mean(koku.nv.mc.res.Q34S1[, 2])

# 曲線に流し込むx軸範囲と区切り
x <- seq(0, 40, 1)

# ロジスティック曲線の式
y.koku.nv.res.Q34S2 <- 1/(1 + exp(-i.koku.nv.res.Q34S2 - s.koku.nv.res.Q34S2 * 
    x))
y.koku.nv.res.Q34S1 <- 1/(1 + exp(-i.koku.nv.res.Q34S1 - s.koku.nv.res.Q34S1 * 
    x))

# 曲線描画
lines(x, y.koku.nv.res.Q34S2, lty = 1)
lines(x, y.koku.nv.res.Q34S1, lty = 2)

# 凡例
legend(3, 0.3, c("理由・考え方", "", "", "正誤", ""), pch = c("●", "", "", 
    "×", ""), lty = c(0, 1, 0, 0, 2), bty = "n")

plot of chunk unnamed-chunk-22

非計画・小テスト

plot(koku_nv$size, xlim = c(0, 40), koku_nv$Q35S2, pch = "●", col = 8, xaxt = "n", 
    yaxt = "n", xlab = "", ylab = "", axes = F)

par(new = T)

plot(koku_nv$size, xlim = c(0, 40), koku_nv$Q35S1, pch = "×", xaxt = "n", yaxt = "n", 
    xlab = "学級規模", ylab = "実施状況", axes = F)
axis(side = 1, at = seq(0, 40, 5), cex.axis = 0.8)
axis(side = 2, at = seq(0, 1, 1), labels = c("全く~半分くらい", "いつも・ほとんど"), 
    cex.axis = 0.8)

# ロジスティック曲線のための値取り出し
i.koku.nv.res.Q35S2 <- mean(koku.nv.mc.res.Q35S2[, 1])
s.koku.nv.res.Q35S2 <- mean(koku.nv.mc.res.Q35S2[, 2])

i.koku.nv.res.Q35S1 <- mean(koku.nv.mc.res.Q35S1[, 1])
s.koku.nv.res.Q35S1 <- mean(koku.nv.mc.res.Q35S1[, 2])

# 曲線に流し込むx軸範囲と区切り
x <- seq(0, 40, 1)

# ロジスティック曲線の式
y.koku.nv.res.Q35S2 <- 1/(1 + exp(-i.koku.nv.res.Q35S2 - s.koku.nv.res.Q35S2 * 
    x))
y.koku.nv.res.Q35S1 <- 1/(1 + exp(-i.koku.nv.res.Q35S1 - s.koku.nv.res.Q35S1 * 
    x))

# 曲線描画
lines(x, y.koku.nv.res.Q35S2, lty = 1)
lines(x, y.koku.nv.res.Q35S1, lty = 2)

# 凡例
legend(3, 0.35, c("理由・考え方", "", "", "正誤", ""), pch = c("●", "", "", 
    "×", ""), lty = c(0, 1, 0, 0, 2), bty = "n")

plot of chunk unnamed-chunk-23