Randomized Block design


Más información aqui


Datos

Descargar la base de datos aquí

Cargar la base de datos

# Install.pakages("readxl")
library(readxl)
datos <- read_excel("C:/Users/LVARGAS/Desktop/materialCi2016 inferencia/baseDatos/datos.xlsx", sheet = 4)
datos <- transform(datos, Trt = factor(Trt))
datos <- transform(datos, Bloque = factor(Bloque))
head(datos, 2)
##   Bloque Parc Trt Wdry50S Wgrain50S WidthArea LengthArea WGrain WHumid
## 1      1    5   1    96.8     38.14       1.5          9   2370 200.05
## 2      1    7  11   106.9     38.40       1.5          9   2670 200.88
##     WDry W200g Area AreaCount Count Tasseling Lodging Flowering Maturity
## 1 180.43  6.99 13.5     0.187  26.7        56       0        60      107
## 2 182.06  7.19 13.5     0.187  25.8        53       0        56      106
##   Height       HI X.Humidity H2O_Grain Yield_Dry Yield_12_H2O  Biomass
## 1   78.5 39.40083 0.09807548  232.4389  1583.379     1799.294 4018.643
## 2   74.7 35.92142 0.09368777  250.1464  1792.484     2036.914 4990.015
##      Straw Spikes.m2  Thou Grains.m² Grains.spike WStem WGrain.spike
## 1 2435.265  207.5745 34.95  4530.411     21.82546 1.936       0.7628
## 2 3197.530  233.3964 35.95  4986.048     21.36300 2.138       0.7680
##   Plants.m² DaysGrain  BioRate GrainRateA GrainRateB  VegRate KernelRate
## 1  142.7807        47 37.55741   16.81583   38.28285 40.58774   0.743617
## 2  137.9679        50 47.07561   19.21617   40.73828 57.09876   0.719000
##    P.H.
## 1 727.8
## 2 711.2
str(datos)
## 'data.frame':    14 obs. of  40 variables:
##  $ Bloque      : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 2 2 2 ...
##  $ Parc        : num  5 7 8 10 11 12 14 16 17 19 ...
##  $ Trt         : Factor w/ 7 levels "1","3","5","7",..: 1 6 4 7 3 5 2 4 1 3 ...
##  $ Wdry50S     : num  96.8 106.9 129.9 107.3 128.3 ...
##  $ Wgrain50S   : num  38.1 38.4 52.5 38.6 53.5 ...
##  $ WidthArea   : num  1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ...
##  $ LengthArea  : num  9 9 9 9 9 9 9 9 9 9 ...
##  $ WGrain      : num  2370 2670 1732 3556 4277 ...
##  $ WHumid      : num  200 201 200 200 200 ...
##  $ WDry        : num  180 182 182 182 182 ...
##  $ W200g       : num  6.99 7.19 7.19 6.87 7.78 6.97 7.77 7.11 7.25 7.68 ...
##  $ Area        : num  13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 ...
##  $ AreaCount   : num  0.187 0.187 0.187 0.187 0.125 0.187 0.187 0.187 0.187 0.125 ...
##  $ Count       : num  26.7 25.8 23.5 22.8 20.7 21.7 24.5 17.3 19.5 22.3 ...
##  $ Tasseling   : num  56 53 53 54 53 53 55 53 56 54 ...
##  $ Lodging     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Flowering   : num  60 56 57 57 57 56 59 57 59 57 ...
##  $ Maturity    : num  107 106 107 108 107 106 107 106 106 107 ...
##  $ Height      : num  78.5 74.7 64.3 88.3 86.5 69.3 78 64.8 77.8 88.8 ...
##  $ HI          : num  39.4 35.9 40.5 36 41.7 ...
##  $ X.Humidity  : num  0.0981 0.0937 0.0925 0.0944 0.0939 ...
##  $ H2O_Grain   : num  232 250 160 336 401 ...
##  $ Yield_Dry   : num  1583 1792 1164 2385 2871 ...
##  $ Yield_12_H2O: num  1799 2037 1323 2711 3262 ...
##  $ Biomass     : num  4019 4990 2878 6629 6888 ...
##  $ Straw       : num  2435 3198 1714 4244 4018 ...
##  $ Spikes.m2   : num  208 233 111 309 268 ...
##  $ Thou        : num  35 36 36 34.4 38.9 ...
##  $ Grains.m²   : num  4530 4986 3239 6945 7380 ...
##  $ Grains.spike: num  21.8 21.4 29.2 22.5 27.5 ...
##  $ WStem       : num  1.94 2.14 2.6 2.15 2.57 ...
##  $ WGrain.spike: num  0.763 0.768 1.051 0.772 1.069 ...
##  $ Plants.m²   : num  143 138 126 122 166 ...
##  $ DaysGrain   : num  47 50 50 51 50 50 48 49 47 50 ...
##  $ BioRate     : num  37.6 47.1 26.9 61.4 64.4 ...
##  $ GrainRateA  : num  16.8 19.2 12.4 25.1 30.5 ...
##  $ GrainRateB  : num  38.3 40.7 26.5 53.2 65.2 ...
##  $ VegRate     : num  40.6 57.1 30.1 74.5 70.5 ...
##  $ KernelRate  : num  0.744 0.719 0.719 0.674 0.778 ...
##  $ P.H.        : num  728 711 726 709 729 ...
names(datos)
##  [1] "Bloque"       "Parc"         "Trt"          "Wdry50S"     
##  [5] "Wgrain50S"    "WidthArea"    "LengthArea"   "WGrain"      
##  [9] "WHumid"       "WDry"         "W200g"        "Area"        
## [13] "AreaCount"    "Count"        "Tasseling"    "Lodging"     
## [17] "Flowering"    "Maturity"     "Height"       "HI"          
## [21] "X.Humidity"   "H2O_Grain"    "Yield_Dry"    "Yield_12_H2O"
## [25] "Biomass"      "Straw"        "Spikes.m2"    "Thou"        
## [29] "Grains.m²"    "Grains.spike" "WStem"        "WGrain.spike"
## [33] "Plants.m²"    "DaysGrain"    "BioRate"      "GrainRateA"  
## [37] "GrainRateB"   "VegRate"      "KernelRate"   "P.H."

Con la función agregate() se pueden hacer resumenes por grupo. Las opciones son: sum, mean, median, sd, se, min, max.

aggregate(Yield_12_H2O ~ Trt, datos, mean)
##   Trt Yield_12_H2O
## 1   1     1750.456
## 2   3     2874.998
## 3   5     3364.312
## 4   7     1037.812
## 5   9     1681.568
## 6  11     2309.546
## 7  13     2693.390

Utilizar la función boxplot para construir un diagrama

boxplot(datos$Yield_12_H2O ~ datos$Trt, xlab="Tratamiento",ylab="Rendimiento 12% H2O (kg ha-1)")


Construir un diagrama de interacción

interaction.plot(datos$Trt, datos$Bloque, datos$Yield_12_H2O, xlab="Tratamiento",ylab="Rendimiento 12% H2O (kg ha-1)")

interaction.plot(datos$Bloque, datos$Trt, datos$Yield_12_H2O, xlab="Bloque",ylab="Rendimiento 12% H2O (kg ha-1)")


Realizar un ANOVA de acuerdo al modelo para un Randomized Block design

anova(lm(datos$Yield_12_H2O ~ datos$Bloque + datos$Trt))
## Analysis of Variance Table
## 
## Response: datos$Yield_12_H2O
##              Df  Sum Sq Mean Sq F value    Pr(>F)    
## datos$Bloque  1       0       0   0.000 0.9995682    
## datos$Trt     6 7748613 1291436  22.192 0.0007507 ***
## Residuals     6  349161   58193                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

La misma acción en dos pasos

ajuste <- lm(datos$Yield_12_H2O ~ datos$Bloque + datos$Trt)
anova(ajuste)
## Analysis of Variance Table
## 
## Response: datos$Yield_12_H2O
##              Df  Sum Sq Mean Sq F value    Pr(>F)    
## datos$Bloque  1       0       0   0.000 0.9995682    
## datos$Trt     6 7748613 1291436  22.192 0.0007507 ***
## Residuals     6  349161   58193                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de medias con el paquete TukeyHSD()

prueba <- aov(datos$Yield_12_H2O ~ datos$Bloque + datos$Trt)
TukeyHSD(prueba, "datos$Trt", ordered = TRUE)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
##     factor levels have been ordered
## 
## Fit: aov(formula = datos$Yield_12_H2O ~ datos$Bloque + datos$Trt)
## 
## $`datos$Trt`
##             diff         lwr      upr     p adj
## 9-7    643.75649 -361.851512 1649.364 0.2499356
## 1-7    712.64420 -292.963805 1718.252 0.1833526
## 11-7  1271.73420  266.126197 2277.342 0.0171362
## 13-7  1655.57810  649.970096 2661.186 0.0045229
## 3-7   1837.18615  831.578146 2842.794 0.0025999
## 5-7   2326.49976 1320.891755 3332.108 0.0007094
## 1-9     68.88771 -936.720294 1074.496 0.9999073
## 11-9   627.97771 -377.630292 1633.586 0.2680896
## 13-9  1011.82161    6.213607 2017.430 0.0486973
## 3-9   1193.42966  187.821657 2199.038 0.0231802
## 5-9   1682.74327  677.135266 2688.351 0.0041515
## 11-1   559.09000 -446.517999 1564.698 0.3615919
## 13-1   942.93390  -62.674100 1948.542 0.0654782
## 3-1   1124.54195  118.933950 2130.150 0.0305106
## 5-1   1613.85556  608.247559 2619.464 0.0051696
## 13-11  383.84390 -621.764101 1389.452 0.6938596
## 3-11   565.45195 -440.156052 1571.060 0.3519511
## 5-11  1054.76556   49.157558 2060.374 0.0406471
## 3-13   181.60805 -823.999951 1187.216 0.9821915
## 5-13   670.92166 -334.686342 1676.530 0.2213177
## 5-3    489.31361 -516.294391 1494.922 0.4805923
plot(TukeyHSD(prueba, "datos$Trt", ordered = TRUE))


Prueba de medias con el paquete agricolae

#install.packages("agricolae")
library(agricolae)
comparaciones <- HSD.test(ajuste, "datos$Trt")
comparaciones
## $statistics
##       Mean       CV  MSerror      HSD
##   2244.583 10.74735 58193.47 1005.608
## 
## $parameters
##   Df ntr StudentizedRange alpha  test    name.t
##    6   7         5.895309  0.05 Tukey datos$Trt
## 
## $means
##    datos$Yield_12_H2O       std r       Min      Max
## 1            1750.456  69.06707 2 1701.6183 1799.294
## 11           2309.546 385.56019 2 2036.9138 2582.178
## 13           2693.390  24.61455 2 2675.9849 2710.795
## 3            2874.998  58.10076 2 2833.9146 2916.081
## 5            3364.312 144.38696 2 3262.2146 3466.409
## 7            1037.812 403.34192 2  752.6061 1323.018
## 9            1681.568  90.66437 2 1617.4590 1745.678
## 
## $comparison
## NULL
## 
## $groups
##   trt    means   M
## 1  5  3364.312   a
## 2  3  2874.998  ab
## 3  13 2693.390 abc
## 4  11 2309.546 bcd
## 5  1  1750.456 cde
## 6  9  1681.568  de
## 7  7  1037.812   e