Joggle and Wave 1 Neuropsych PCA Analyses

Initial Extraction of the Components

Jogglew01NeupsyPCA<-principal(Jogglew01Neupsy,nfactors=20,rotate="none")
principal(r=Jogglew01Neupsy,nfactors=20,rotate="none")

Eigen Values

ev <- eigen(cor(Jogglew01Neupsy))
ev$values
##  [1]  5.724e+00  2.812e+00  1.826e+00  1.577e+00  1.101e+00  9.140e-01
##  [7]  7.005e-01  6.977e-01  6.360e-01  6.075e-01  5.429e-01  5.030e-01
## [13]  4.766e-01  4.181e-01  3.897e-01  3.328e-01  2.823e-01  2.703e-01
## [19]  1.885e-01 -4.196e-16

Scree Plot

ap <- parallel(subject=nrow(Jogglew01Neupsy),var=ncol(Jogglew01Neupsy), rep=100,cent=.05)
nS <- nScree(x=ev$values, aparallel=ap$eigen$qevpea)
plotnScree(nS)

plot of chunk unnamed-chunk-4

Rotation to Final Solution - 5 Factors

Jogglew01NeupsyPCA.r<-principal(Jogglew01Neupsy,nfactors=5,rotate="promax",scores=T)
principal(r=Jogglew01Neupsy,nfactors=5,rotate="promax",scores=T)
## Principal Components Analysis
## Call: principal(r = Jogglew01Neupsy, nfactors = 5, rotate = "promax", 
##     scores = T)
## Standardized loadings (pattern matrix) based upon correlation matrix
##                   PC1   PC2   PC3   PC5   PC4   h2    u2
## BARTaccuracy1    0.70  0.06  0.19  0.16 -0.14 0.51 0.493
## DSSTefficiency1  0.78 -0.03 -0.06 -0.03  0.33 0.81 0.192
## LOTefficiency1   0.31 -0.01 -0.08  0.03  0.68 0.59 0.408
## PVTefficiency1   0.04  0.78 -0.17  0.09  0.30 0.60 0.396
## AMefficiency1    0.21 -0.58  0.38 -0.08  0.27 0.58 0.423
## NBACKaccuracy1   0.84  0.01 -0.07 -0.06 -0.13 0.70 0.302
## VOLTefficiency1 -0.19  0.18 -0.26  0.00  0.83 0.63 0.374
## MPTspeed1        0.38  0.21  0.14  0.00  0.36 0.46 0.539
## BVRtot1         -0.70 -0.32 -0.14 -0.04  0.05 0.68 0.322
## CrdRot1          0.05 -0.15  0.85 -0.15 -0.12 0.74 0.259
## IdentPicScore    0.79  0.13  0.16 -0.03  0.00 0.76 0.239
## CVLtca1          0.26  0.55  0.24 -0.06 -0.15 0.58 0.421
## DigitSpanFwd1   -0.64  0.42  0.26 -0.14  0.10 0.65 0.352
## DigitSpanBck1    0.44  0.71 -0.19 -0.09 -0.09 0.68 0.324
## FluencyWord1     0.79 -0.08 -0.18 -0.08  0.10 0.68 0.319
## TrailsAtestSec1  0.03  0.00 -0.24 -0.05 -0.43 0.27 0.725
## TrailsBtestSec1 -0.04 -0.01 -0.03  0.95 -0.03 0.97 0.026
## TrailsBminusA1  -0.04 -0.01  0.01  0.99  0.05 0.98 0.024
## Attention1      -0.23  0.57  0.33 -0.01  0.09 0.59 0.413
## ClockTotal1     -0.04  0.01  0.84  0.16 -0.15 0.59 0.409
## 
##                        PC1  PC2  PC3  PC5  PC4
## SS loadings           4.68 2.47 2.04 2.05 1.81
## Proportion Var        0.23 0.12 0.10 0.10 0.09
## Cumulative Var        0.23 0.36 0.46 0.56 0.65
## Proportion Explained  0.36 0.19 0.16 0.16 0.14
## Cumulative Proportion 0.36 0.55 0.70 0.86 1.00
## 
##  With component correlations of 
##       PC1   PC2   PC3   PC5   PC4
## PC1  1.00  0.06  0.19 -0.31  0.19
## PC2  0.06  1.00  0.34 -0.17  0.01
## PC3  0.19  0.34  1.00 -0.42  0.27
## PC5 -0.31 -0.17 -0.42  1.00 -0.22
## PC4  0.19  0.01  0.27 -0.22  1.00
## 
## Test of the hypothesis that 5 components are sufficient.
## 
## The degrees of freedom for the null model are  190  and the objective function was  30.05
## The degrees of freedom for the model are 100  and the objective function was  20.02 
## The total number of observations was  1972  with MLE Chi Square =  39239  with prob <  0 
## 
## Fit based upon off diagonal values = 0.97

Rotation to Final Solution - 6 Factors

Jogglew01NeupsyPCA.r<-principal(Jogglew01Neupsy,nfactors=6,rotate="promax",scores=T)
principal(r=Jogglew01Neupsy,nfactors=6,rotate="promax",scores=T)
## Principal Components Analysis
## Call: principal(r = Jogglew01Neupsy, nfactors = 6, rotate = "promax", 
##     scores = T)
## 
##  Warning: A Heywood case was detected. 
## Standardized loadings (pattern matrix) based upon correlation matrix
##                   PC1   PC2   PC5   PC3   PC4   PC6   h2    u2
## BARTaccuracy1    0.70  0.07  0.15  0.22 -0.10  0.10 0.51 0.487
## DSSTefficiency1  0.78 -0.03 -0.03 -0.05  0.30 -0.06 0.81 0.192
## LOTefficiency1   0.28 -0.01  0.02  0.03  0.71  0.06 0.65 0.350
## PVTefficiency1   0.02  0.79  0.08 -0.09  0.36  0.13 0.63 0.367
## AMefficiency1    0.20 -0.58 -0.08  0.37  0.23 -0.11 0.58 0.422
## NBACKaccuracy1   0.85  0.00 -0.06 -0.09 -0.14  0.01 0.70 0.299
## VOLTefficiency1 -0.21  0.18 -0.01 -0.17  0.82 -0.03 0.66 0.345
## MPTspeed1        0.37  0.21  0.00  0.16  0.34 -0.05 0.47 0.534
## BVRtot1         -0.71 -0.33 -0.04 -0.12  0.05  0.01 0.68 0.322
## CrdRot1          0.04 -0.13 -0.15  0.81 -0.11 -0.05 0.74 0.255
## IdentPicScore    0.81  0.12 -0.03  0.09 -0.06 -0.14 0.78 0.224
## CVLtca1          0.27  0.56 -0.06  0.20 -0.16 -0.03 0.58 0.419
## DigitSpanFwd1   -0.63  0.43 -0.14  0.22  0.07 -0.10 0.65 0.351
## DigitSpanBck1    0.46  0.70 -0.09 -0.23 -0.11 -0.02 0.69 0.313
## FluencyWord1     0.79 -0.09 -0.08 -0.16  0.10  0.04 0.68 0.318
## TrailsAtestSec1 -0.09  0.04 -0.09  0.14  0.01  1.02 0.93 0.068
## TrailsBtestSec1 -0.05 -0.01  0.96  0.02  0.00  0.05 0.98 0.023
## TrailsBminusA1  -0.03 -0.02  1.01 -0.01  0.00 -0.15 0.99 0.014
## Attention1      -0.22  0.58 -0.01  0.28  0.06 -0.12 0.59 0.411
## ClockTotal1     -0.07  0.04  0.14  0.91 -0.04  0.18 0.67 0.333
## 
##                        PC1  PC2  PC5  PC3  PC4  PC6
## SS loadings           4.70 2.49 2.08 1.91 1.66 1.12
## Proportion Var        0.23 0.12 0.10 0.10 0.08 0.06
## Cumulative Var        0.23 0.36 0.46 0.56 0.64 0.70
## Proportion Explained  0.34 0.18 0.15 0.14 0.12 0.08
## Cumulative Proportion 0.34 0.51 0.66 0.80 0.92 1.00
## 
##  With component correlations of 
##       PC1   PC2   PC5   PC3   PC4   PC6
## PC1  1.00  0.06 -0.31  0.21  0.21 -0.07
## PC2  0.06  1.00 -0.18  0.32 -0.05 -0.17
## PC5 -0.31 -0.18  1.00 -0.43 -0.17  0.29
## PC3  0.21  0.32 -0.43  1.00  0.15 -0.35
## PC4  0.21 -0.05 -0.17  0.15  1.00 -0.24
## PC6 -0.07 -0.17  0.29 -0.35 -0.24  1.00
## 
## Test of the hypothesis that 6 components are sufficient.
## 
## The degrees of freedom for the null model are  190  and the objective function was  30.05
## The degrees of freedom for the model are 85  and the objective function was  19.37 
## The total number of observations was  1972  with MLE Chi Square =  37960  with prob <  0 
## 
## Fit based upon off diagonal values = 0.97

Rotation to Final Solution - 7 Factors

Jogglew01NeupsyPCA.r<-principal(Jogglew01Neupsy,nfactors=7,rotate="promax",scores=T)
principal(r=Jogglew01Neupsy,nfactors=7,rotate="promax",scores=T)
## Principal Components Analysis
## Call: principal(r = Jogglew01Neupsy, nfactors = 7, rotate = "promax", 
##     scores = T)
## 
##  Warning: A Heywood case was detected. 
## Standardized loadings (pattern matrix) based upon correlation matrix
##                   PC1   PC3   PC2   PC5   PC4   PC7   PC6   h2    u2
## BARTaccuracy1    0.70  0.02  0.19  0.16 -0.03 -0.06  0.11 0.52 0.482
## DSSTefficiency1  0.77 -0.03 -0.06 -0.03  0.23  0.25 -0.06 0.81 0.192
## LOTefficiency1   0.29  0.14  0.22  0.00  0.23  0.86 -0.01 0.82 0.181
## PVTefficiency1   0.04  0.77 -0.06  0.08  0.31  0.21  0.12 0.64 0.365
## AMefficiency1    0.18 -0.61  0.32 -0.08  0.24  0.14 -0.09 0.59 0.410
## NBACKaccuracy1   0.86  0.01 -0.08 -0.06 -0.15  0.00  0.01 0.70 0.298
## VOLTefficiency1 -0.24  0.12 -0.26 -0.01  0.85  0.31  0.01 0.70 0.299
## MPTspeed1        0.35  0.04 -0.04  0.01  0.64 -0.14  0.03 0.66 0.343
## BVRtot1         -0.73 -0.31 -0.15 -0.04  0.07 -0.05  0.02 0.68 0.319
## CrdRot1          0.05 -0.19  0.82 -0.15 -0.07 -0.03 -0.04 0.74 0.255
## IdentPicScore    0.82  0.07  0.06 -0.02  0.01 -0.05 -0.13 0.78 0.220
## CVLtca1          0.28  0.40  0.07 -0.05  0.17 -0.39  0.03 0.67 0.327
## DigitSpanFwd1   -0.61  0.43  0.29 -0.14  0.01  0.08 -0.13 0.67 0.332
## DigitSpanBck1    0.50  0.75 -0.12 -0.09 -0.23  0.09 -0.07 0.74 0.258
## FluencyWord1     0.80 -0.02 -0.09 -0.09 -0.09  0.28  0.01 0.71 0.288
## TrailsAtestSec1 -0.11  0.03  0.11 -0.09  0.03 -0.02  1.02 0.95 0.055
## TrailsBtestSec1 -0.05 -0.01  0.03  0.97  0.00  0.00  0.05 0.98 0.023
## TrailsBminusA1  -0.03 -0.01  0.01  1.01  0.00  0.00 -0.15 0.99 0.014
## Attention1      -0.19  0.52  0.28 -0.01  0.13 -0.04 -0.12 0.59 0.411
## ClockTotal1     -0.04  0.07  1.05  0.13 -0.22  0.24  0.13 0.73 0.273
## 
##                        PC1  PC3  PC2  PC5  PC4  PC7  PC6
## SS loadings           4.75 2.29 1.93 2.09 1.41 1.08 1.10
## Proportion Var        0.24 0.11 0.10 0.10 0.07 0.05 0.06
## Cumulative Var        0.24 0.35 0.45 0.55 0.62 0.68 0.73
## Proportion Explained  0.32 0.16 0.13 0.14 0.10 0.07 0.08
## Cumulative Proportion 0.32 0.48 0.61 0.75 0.85 0.92 1.00
## 
##  With component correlations of 
##       PC1   PC3   PC2   PC5   PC4   PC7   PC6
## PC1  1.00  0.05  0.22 -0.33  0.28 -0.05 -0.06
## PC3  0.05  1.00  0.32 -0.14  0.17 -0.33 -0.14
## PC2  0.22  0.32  1.00 -0.43  0.43 -0.38 -0.32
## PC5 -0.33 -0.14 -0.43  1.00 -0.30  0.11  0.28
## PC4  0.28  0.17  0.43 -0.30  1.00 -0.06 -0.32
## PC7 -0.05 -0.33 -0.38  0.11 -0.06  1.00  0.05
## PC6 -0.06 -0.14 -0.32  0.28 -0.32  0.05  1.00
## 
## Test of the hypothesis that 7 components are sufficient.
## 
## The degrees of freedom for the null model are  190  and the objective function was  30.05
## The degrees of freedom for the model are 71  and the objective function was  19.66 
## The total number of observations was  1972  with MLE Chi Square =  38508  with prob <  0 
## 
## Fit based upon off diagonal values = 0.97