Power


Notes


Calculating power for Gaussian data

Assume that \( n \) is large and that we know \( \sigma \) \[ \begin{align} 1 -\beta & = P\left(\frac{\bar X - 30}{\sigma /\sqrt{n}} > z_{1-\alpha} ~|~ \mu = \mu_a \right)\\ & = P\left(\frac{\bar X - \mu_a + \mu_a - 30}{\sigma /\sqrt{n}} > z_{1-\alpha} ~|~ \mu = \mu_a \right)\\ \\ & = P\left(\frac{\bar X - \mu_a}{\sigma /\sqrt{n}} > z_{1-\alpha} - \frac{\mu_a - 30}{\sigma /\sqrt{n}} ~|~ \mu = \mu_a \right)\\ \\ & = P\left(Z > z_{1-\alpha} - \frac{\mu_a - 30}{\sigma /\sqrt{n}} ~|~ \mu = \mu_a \right)\\ \\ \end{align} \]


Example continued

pnorm(-0.355, lower.tail = FALSE)
[1] 0.6387

Note

sigma <- 10; mu_0 = 0; mu_a = 2; n <- 100; alpha = .05
plot(c(-3, 6),c(0, dnorm(0)), type = "n", frame = false, xlab = "Z value", ylab = "")
xvals <- seq(-3, 6, length = 1000)
lines(xvals, dnorm(xvals), type = "l", lwd = 3)
lines(xvals, dnorm(xvals, mean = sqrt(n) * (mu_a - mu_0) / sigma), lwd =3)
abline(v = qnorm(1 - alpha))

plot of chunk unnamed-chunk-2

Question


Notes


T-test power


Example

power.t.test(n = 16, delta = 2 / 4, sd=1, type = "one.sample",  alt = "one.sided")$power
[1] 0.604
power.t.test(n = 16, delta = 2, sd=4, type = "one.sample",  alt = "one.sided")$power
[1] 0.604
power.t.test(n = 16, delta = 100, sd=200, type = "one.sample", alt = "one.sided")$power
[1] 0.604

Example

power.t.test(power = .8, delta = 2 / 4, sd=1, type = "one.sample",  alt = "one.sided")$n
[1] 26.14
power.t.test(power = .8, delta = 2, sd=4, type = "one.sample",  alt = "one.sided")$n
[1] 26.14
power.t.test(power = .8, delta = 100, sd=200, type = "one.sample", alt = "one.sided")$n
[1] 26.14