Following my previous post on simple bibliometric with GS Google Scholar, this time I try to do the same steps with MSA Microsoft Academic. The pros in using MSA is that it offers categorization of scientific entries. This is not available with GS. In this post I tabulated and compared each category with several keywords. Here I used the following keywords:
The following list contains the categories that automatically built by MSA:
I worked around this with the following codes.
# load library
library("lattice")
library("gridExtra")
## Loading required package: grid
I use LibreOffice to prepare the data. Basically every keyword consists of 15 observations (see the result from head(bib)).
# load data
bib = read.csv("20140523b-summary references.csv", header = T)
head(bib)
## no fields2 fields key dbase sum
## 1 1 Agriculture Science agsci Bandung msacd 16
## 2 2 Arts & Humanities arthum Bandung msacd 44
## 3 3 Biology bio Bandung msacd 129
## 4 4 Chemistry chem Bandung msacd 153
## 5 5 Computer Science comsci Bandung msacd 406
## 6 6 Economics & Business ecobus Bandung msacd 44
I did the subsetting for each keyword.
# subsetting data
bib.wj = subset(bib, bib$key == "West Java")
bib.bdg = subset(bib, bib$key == "Bandung")
bib.ctr = subset(bib, bib$key == "Citarum")
bib.ckp = subset(bib, bib$key == "Cikapundung")
bib.gwbdg = subset(bib, bib$key == "Groundwater Bandung")
bib.gwctr = subset(bib, bib$key == "Groundwater Citarum")
bib.gwckp = subset(bib, bib$key == "Groundwater Cikapundung")
bib.healthbdg = subset(bib, bib$key == "Health Bandung")
I used lattice and gridExtra package for plotting. You may use another package, but you have to change the codes.
# plotting
plot1 = xyplot(bib.wj$fields ~ bib.wj$sum, pch = 21, fill = "red", xlim = c(0,
8000), main = "key: West Java")
plot2 = xyplot(bib.bdg$fields ~ bib.bdg$sum, pch = 21, fill = "red", xlim = c(0,
8000), main = "key: Bandung")
plot3 = xyplot(bib.ctr$fields ~ bib.ctr$sum, pch = 21, fill = "red", xlim = c(0,
8000), main = "key: Citarum")
grid.arrange(plot1, plot2, plot3, ncol = 3)
plot4 = xyplot(bib.gwbdg$fields ~ bib.gwbdg$sum, pch = 21, fill = "red", xlim = c(0,
50), main = "key: Groundwater Bandung")
plot5 = xyplot(bib.gwctr$fields ~ bib.gwctr$sum, pch = 21, fill = "red", xlim = c(0,
50), main = "key: Groundwater Citarum")
plot6 = xyplot(bib.healthbdg$fields ~ bib.healthbdg$sum, pch = 21, fill = "red",
xlim = c(0, 50), main = "key: Health Bandung")
grid.arrange(plot4, plot5, plot6, ncol = 3)
plot7 = xyplot(bib.ckp$fields ~ bib.ckp$sum, pch = 21, fill = "red", xlim = c(0,
10), main = "key: Cikapundung")
plot8 = xyplot(bib.gwckp$fields ~ bib.gwckp$sum, pch = 21, fill = "red", xlim = c(0,
10), main = "key: Groundwater Cikapundung")
grid.arrange(plot7, plot8, ncol = 3)
Note: OS : Ubuntu 13.10 R studio Version : 0.98.507 R base Version : 3.1.0 (2014-04-10)