Summary of Combined Land-Surface Air and Sea-Surface Water Temperature Anomalies (Land-Ocean Temperature Index, LOTI)

library(moments)
setwd('/Users/shannoncall/Desktop/ESCI597A/Week01')
load("/Users/shannoncall/Desktop/ESCI597A/Week01/climate_Time_Series_Extravaganza.Rdata")
summary(loti.ts)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -0.77000 -0.22000 -0.05000  0.02167  0.21750  1.35000

Plot Dataset

plot(loti.ts)

####Linear Model

tsp(loti.ts) #Verify the structure of the data set using the time-series properties command. This data set starts in 1880, ends in 2016, and has a frequency of 12. This means there are 12 observations per year (Note: 2016 is not over, I may restrict the dataset to 1880-2015)
## [1] 1880.000 2016.083   12.000
kt <- kurtosis(loti.ts)
sk<- skewness(loti.ts)
my.xlim <- range(loti.ts)
h<- hist(loti.ts, breaks=10, col="magenta", xlab="Loti Index", main="",xlim=my.xlim)
xfit<-seq(min(loti.ts),max(loti.ts),length=100)
yfit<-dnorm(xfit,mean=mean(loti.ts),sd=sd(loti.ts))
yfit <- yfit*diff(h$mids[1:2])*length(loti.ts)
lines(xfit, yfit, col="gold2", lwd=2)
boxplot(loti.ts, horizontal=TRUE, outline=TRUE, axes=FALSE, ylim=my.xlim, col = "gold2", add=TRUE, lwd=3, boxwex=3)
text(x = 0.75, y=450, labels = paste("Kurtosis=", round(kt,2)),pos=4)
text(x = 0.75, y=400, labels = paste("Skewness=", round(sk,2)),pos=4)

Linear Model

LotiTime <- time(loti.ts) #Create an object called *LotiTime* and make the loti.ts a time series. Though, in hindsight it was already a time series. :)
Loti.lm <- lm(loti.ts ~ LotiTime) #Run a linear model of the LotiTime object
summary(Loti.lm)
## 
## Call:
## lm(formula = loti.ts ~ LotiTime)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.57565 -0.14028 -0.00237  0.13641  0.85608 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.350e+01  2.351e-01  -57.41   <2e-16 ***
## LotiTime     6.940e-03  1.207e-04   57.51   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1918 on 1632 degrees of freedom
## Multiple R-squared:  0.6696, Adjusted R-squared:  0.6694 
## F-statistic:  3307 on 1 and 1632 DF,  p-value: < 2.2e-16

This linear model has an adjusted R-squared value of 0.67, indicating the Loti index is changing over time. However, the residuals on this model are not identical and independently distributed. The coefficients are accurate though. Looks like the land-surface air and sea-surface water temperature anomalies have decreased by 0.007 degrees C over time.

Add some filters,

ma20 <- filter(x=loti.ts, filter=rep(x=1/20,times=20), sides=2)
ma10 <- filter(x=loti.ts, filter=rep(x=1/10,times=10), sides=2)

Plot those filters

plot(loti.ts,col="dodgerblue4")
lines(ma20,col="firebrick4",lwd=2)
lines(ma10,col="goldenrod3",lwd=1)
abline(Loti.lm, col="darkslateblue",lwd=2, lty="dashed") #Trend line from the linear model.

head(cbind(loti.ts,ma20,ma10), n=10)
##       loti.ts    ma20   ma10
##  [1,]   -0.29      NA     NA
##  [2,]   -0.20      NA     NA
##  [3,]   -0.18      NA     NA
##  [4,]   -0.27      NA     NA
##  [5,]   -0.14      NA -0.196
##  [6,]   -0.28      NA -0.185
##  [7,]   -0.22      NA -0.185
##  [8,]   -0.07      NA -0.176
##  [9,]   -0.16      NA -0.162
## [10,]   -0.15 -0.1475 -0.146

Decomposition and Seasonality - I’m betting there is some seasonality in this index.

f <- frequency(loti.ts)
filt <- c(0.5, rep(1, times=f-1), 0.5)/f
m.hat <- filter(x=loti.ts, filter=filt) #This creates a filter where we create a centered moving average
s.hat <- loti.ts - m.hat
par(mfcol=c(2,1))
plot(s.hat,ylab=expression("Temperature C"))
boxplot(s.hat~cycle(s.hat), xlab="Year", ylab=expression("Temperature C"))

These plots show the seasonality over time so that we might be able to detect the trend in the data without seasonal variation confounding our data.

Decomposition - sans belabored code

loti.ts.d <- decompose(loti.ts) 
plot(loti.ts.d) 

Second: Earthquakes Per Year

read.csv("eqperyear.csv",header=T)
##    Year Number.of.earthquakes.per.year.magnitude.7.0.or.greater..1900.1998
## 1  1900                                                                 13
## 2  1901                                                                 14
## 3  1902                                                                  8
## 4  1903                                                                 10
## 5  1904                                                                 16
## 6  1905                                                                 26
## 7  1906                                                                 32
## 8  1907                                                                 27
## 9  1908                                                                 18
## 10 1909                                                                 32
## 11 1910                                                                 36
## 12 1911                                                                 24
## 13 1912                                                                 22
## 14 1913                                                                 23
## 15 1914                                                                 22
## 16 1915                                                                 18
## 17 1916                                                                 25
## 18 1917                                                                 21
## 19 1918                                                                 21
## 20 1919                                                                 14
## 21 1920                                                                  8
## 22 1921                                                                 11
## 23 1922                                                                 14
## 24 1923                                                                 23
## 25 1924                                                                 18
## 26 1925                                                                 17
## 27 1926                                                                 19
## 28 1927                                                                 20
## 29 1928                                                                 22
## 30 1929                                                                 19
## 31 1930                                                                 13
## 32 1931                                                                 26
## 33 1932                                                                 13
## 34 1933                                                                 14
## 35 1934                                                                 22
## 36 1935                                                                 24
## 37 1936                                                                 21
## 38 1937                                                                 22
## 39 1938                                                                 26
## 40 1939                                                                 21
## 41 1940                                                                 23
## 42 1941                                                                 24
## 43 1942                                                                 27
## 44 1943                                                                 41
## 45 1944                                                                 31
## 46 1945                                                                 27
## 47 1946                                                                 35
## 48 1947                                                                 26
## 49 1948                                                                 28
## 50 1949                                                                 36
## 51 1950                                                                 39
## 52 1951                                                                 21
## 53 1952                                                                 17
## 54 1953                                                                 22
## 55 1954                                                                 17
## 56 1955                                                                 19
## 57 1956                                                                 15
## 58 1957                                                                 34
## 59 1958                                                                 10
## 60 1959                                                                 15
## 61 1960                                                                 22
## 62 1961                                                                 18
## 63 1962                                                                 15
## 64 1963                                                                 20
## 65 1964                                                                 15
## 66 1965                                                                 22
## 67 1966                                                                 19
## 68 1967                                                                 16
## 69 1968                                                                 30
## 70 1969                                                                 27
## 71 1970                                                                 29
## 72 1971                                                                 23
## 73 1972                                                                 20
## 74 1973                                                                 16
## 75 1974                                                                 21
## 76 1975                                                                 21
## 77 1976                                                                 25
## 78 1977                                                                 16
## 79 1978                                                                 18
## 80 1979                                                                 15
## 81 1980                                                                 18
## 82 1981                                                                 14
## 83 1982                                                                 10
## 84 1983                                                                 15
## 85 1984                                                                  8
## 86 1985                                                                 15
## 87 1986                                                                  6
## 88 1987                                                                 11
## 89 1988                                                                  8
## 90 1989                                                                  7
## 91 1990                                                                 13
## 92 1991                                                                 10
## 93 1992                                                                 23
## 94 1993                                                                 16
## 95 1994                                                                 15
## 96 1995                                                                 25
## 97 1996                                                                 22
## 98 1997                                                                 20
## 99 1998                                                                 16
eq<-read.csv("eqperyear.csv",header=T)
numb<-eq$Number.of.earthquakes.per.year.magnitude.7.0.or.greater..1900.1998
earthquakes<-ts(numb,start=c(1900,2),end=c(1998,2),frequency=2)

Plot Earthquakes

plot(earthquakes,ylab="Earthquakes per year")

Figure 7. Earthquakes per year, since 1900 thru 1998
my.xlim <- range(earthquakes)
h<-hist(earthquakes, breaks=5, col="deeppink4", xlab="Number of Earthquakes",
        main="",xlim=my.xlim)
xfit<-seq(min(earthquakes),max(earthquakes),length=8) 
yfit<-dnorm(xfit,mean=mean(earthquakes),sd=sd(earthquakes)) 
yfit <- yfit*diff(h$mids[1:2])*length(earthquakes) 
lines(xfit, yfit, col="darkturquoise", lwd=2)
boxplot(earthquakes, horizontal=TRUE,  outline=TRUE,  axes=FALSE,
        ylim=my.xlim, col = "peachpuff2", add = TRUE, boxwex=3)

Figure 8. Histogram of the number of earthquakes per year.

Linear Model

eqtime <- time(earthquakes)
earthquakes.lm <- lm(earthquakes ~ eqtime)
summary(earthquakes.lm)
## 
## Call:
## lm(formula = earthquakes ~ eqtime)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -14.189  -5.090  -0.053   3.945  21.504 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept) 68.27796   35.37817   1.930   0.0551 .
## eqtime      -0.02474    0.01815  -1.364   0.1743  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.242 on 195 degrees of freedom
## Multiple R-squared:  0.009446,   Adjusted R-squared:  0.004366 
## F-statistic: 1.859 on 1 and 195 DF,  p-value: 0.1743
Looks like there is a downward trend of -0.02474 earthquakes over time. Weird, not sure what that means.

Add Moving Averages and Trend Lines

ma3 <- filter(x=earthquakes, filter=rep(x=1/4,times=4), sides=2)
ma12 <- filter(x=earthquakes, filter=rep(x=1/10,times=10), sides=2)
plot(earthquakes,col="steelblue4")
lines(ma3,col="lightsalmon3",lwd=2)
lines(ma12,col="olivedrab3",lwd=2)
abline(earthquakes.lm, col="magenta2",lwd=2, lty="dashed")

Figure 9. Filter with a four and ten year centered moving average.
A trend isn’t very clear. Let’s decompose to see what happens…

Decomposition

earthquakes.d<-decompose(earthquakes)
plot(earthquakes.d)

Figure 10. Decomposition of additive time series of earthquakes.

There seems to be a very consistent seasonal pattern. However, there is a clear trend which repeats every 45 or 50 years or so. It seems earthquakes greater than 7.0 magnitude happen in a somewhat consistent pattern. I’m no geologist, but I’m sure there is a very good reason for the trend.