library(ERP);require(mnormt);require(fdrtool);library(ggplot2);library(dplyr);
library(gridExtra);library(erpR);require(akima);library(reshape2);library(boot);
library(plotly);library(ggmap);library(SCBmeanfd);library(png);library(grid)
dta <- readRDS("erpt.Rdata")
dta <- dta[,-c(4:5)]
dta$Subject <- factor(dta$Subject,levels=c(paste("subj",1:20,sep="")))

data_select <- function(data,frames,datacol,subjcol=NULL,chancol=NULL,othvarcol=NULL,
                        select_subj=NULL,
                        select_chan=NULL,...){
        # some check function
        subj_select <- function(data,frames,datacol,subjcol,chancol=NULL,othvarcol=NULL,
                       select_subj,...){
                dta <- data
                num <- length(select_subj)
                data_list <- list()
                for (i in 1:num){
                        data_new <- subset(dta,dta[,subjcol]==select_subj[i])
                        data_list[[i]] <- data_new
                }
                data_select <- data_list[[1]]
                if (num != 1) {
                        for (i in 2:num) { 
                                data_select <- rbind(data_select,data_list[[i]])
                        }
                }
                data_select <- data_select[order(data_select[,subjcol]),]
                rownames(data_select) <- 1:dim(data_select)[1]
                return (data_select)
        }
        #data_select(data = dtasum,timepoint2,datacol = 3:108,NULL,1,c(2,109:110),NULL,"PZ")
        chan_select <- function(data,frames,datacol,subjcol=NULL,chancol,othvarcol=NULL,
                       select_chan,...){
                dta <- data
                num <- length(select_chan)
                data_list <- list()
                for (i in 1:num){
                        data_new <- subset(dta,dta[,chancol]==select_chan[i])
                        data_list[[i]] <- data_new
                }
                data_select <- data_list[[1]]
                if (num != 1){
                        for (i in 2:num){
                                data_select <- rbind(data_select,data_list[[i]])
                        }
                }
                #data_select <- data_select[order(data_select[,subjcol]),]
                rownames(data_select) <- 1:dim(data_select)[1]
                return (data_select)
        }
        joint_select <- function(data,frames,datacol,subjcol,chancol,othvarcol=NULL,
                        select_subj,
                        select_chan,...){
                dta <- data
                ind_data <- subj_select(dta,frames,datacol,subjcol,chancol,othvarcol,
                               select_subj = select_subj)
                ind_ele_data <- chan_select(ind_data,frames,datacol,subjcol,chancol,othvarcol,
                               select_chan = select_chan)
                ind_ele_data <- ind_ele_data[order(ind_ele_data[,subjcol]),]
                rownames(ind_ele_data) <- 1 :dim(ind_ele_data)[1]
                return(ind_ele_data)
        }
        if (is.null(select_subj)==FALSE & is.null(select_chan)==FALSE){
                dta <- joint_select(data = data,frames = frames,
                                    datacol,subjcol,chancol,othvarcol,
                                    select_subj=select_subj,
                                    select_chan=select_chan)
        } else if (is.null(select_subj)==FALSE & is.null(select_chan)== TRUE) { 
                dta <- subj_select(data=data,frames=frames,
                                   datacol,subjcol,chancol,othvarcol,
                                   select_subj=select_subj)
        } else if (is.null(select_chan)==FALSE & is.null(select_subj)== TRUE) {
                dta <- chan_select(data,frames,
                                  datacol,subjcol,chancol,othvarcol,
                                  select_chan=select_chan)
        } else {
                dta <- data
        }
        return(dta)
}
data_summarize <- function(data,frames,datacol,subjcol=NULL,chancol=NULL,othvarcol=NULL,
                          summarycol,
                          fun=mean,
                          select_subj=NULL,
                          select_chan=NULL,...){ 
        #some check function
        options(warn=-1) # should close the warnings?
        # selection
        dta <- data_select(data,frames,datacol,subjcol,chancol,othvarcol,
                    select_subj,
                    select_chan)
        # process
        agglength <- length(summarycol)
        aggvar_list <- list(dta[,summarycol[1]])
        if (agglength > 1){
                for (i in 2:agglength ){
                        aggvar_list <- append(aggvar_list,list(dta[,summarycol[i]]))
                }
        }
        aggdata <- aggregate(dta[,datacol],by=aggvar_list,
                             fun,...)
        aggdata <- aggdata[,1:(agglength+length(datacol))]
        for (i in 1: agglength){
                colnames(aggdata)[i] <- colnames(dta)[summarycol[i]]
        }
        rownames(aggdata) <- 1:dim(aggdata)[1] 
        return(aggdata)
}
downsample <- function(data,
                       datacol,
                       binwidth=10,
                       movinginterval=NULL) {
        if (is.null(movinginterval) == FALSE) {
             if (movinginterval >= binwidth){stop("movinginterval should not bigger than binwidth!")}
                dta <- data
                dta_signal <- dta[,datacol]
                dta_othvar <- dta[,-datacol]
                num1 <- (dim(dta_signal)[2] - (dim(dta_signal)[2] %% binwidth)) /binwidth
                num2 <- dim(dta_signal)[2] %% binwidth
                dta_downsample <- data.frame(melt(apply(dta_signal[,1:binwidth],1,mean)))
                i = movinginterval - 1
                while ((binwidth+i) <= dim(dta_signal)[2]){
                        dta_downsample <- cbind(dta_downsample,melt(apply(dta_signal[,(1+i):(binwidth+i)],1,mean)))
                        i = i + movinginterval -1
                }
                if (num2 >= 1) {
                        dta_downsample <- cbind(dta_downsample,
                                                value=melt(apply(dta_signal[,(1+i):dim(dta_signal)[2]],1,mean)))
                }
                colnames(dta_downsample) <- paste("value",1:dim(dta_downsample)[2],sep=".")
                dta_final  <- cbind(dta_othvar,dta_downsample)
        } else {
                dta <- data
                dta_signal <- dta[,datacol]
                dta_othvar <- dta[,-datacol]
                num1 <- (dim(dta_signal)[2] - (dim(dta_signal)[2] %% binwidth))/binwidth
                num2 <- dim(dta_signal)[2] %% binwidth
                dta_downsample <- data.frame(melt(apply(dta_signal[,1:binwidth],1,mean)))
                for (i in 1 : num1-1){
                        dta_downsample <- cbind(dta_downsample,
                                        melt(apply(dta_signal[,(i*binwidth+1):((i+1)*binwidth)],
                                                   1,mean)))
                }
                if (num2 == 1) {
                        dta_downsample <- cbind(dta_downsample,
                                         value=dta_signal[,(num1*binwidth+num2)])
                        ###### notice
                }
                if (num2 > 1) {
                        dta_downsample <- cbind(dta_downsample,
                                melt(apply(dta_signal[,(num1*binwidth+1):(num1*binwidth+num2)],
                                           1,mean)))   
                }
                dta_downsample <- dta_downsample[,-1]
                colnames(dta_downsample) <- paste("value",1:dim(dta_downsample)[2],sep=".")
                dta_final  <- cbind(dta_othvar,dta_downsample)
        }
        return(dta_final)
}
edaplot <- function(data,frames=NULL,datacol,subjcol=NULL,chancol=NULL,othvarcol=NULL,
                             outlinesub=NULL,outcolor="red",
                             select_subj=c(NULL),
                             select_chan=c(NULL),...){
        #some check functions
        #if (is.null(frames) == FALSE) 
        #        if (length(frames) != (ncol(data)-1-length(othvarcol)))
        #                stop(paste("frames should be either null or of length",
        #                           (ncol(data)-1-length(othvarcol))))
        #if (is.null(frames) == FALSE) {
        #        if (any(frames != sort(frames))) 
        #                stop("frames should be an ascending sequence of integers")
        #        }
        #if (is.null(frames)) 
        #        frames = 1:(ncol(data)-1-length(othvarcol))
        #selection
        dta <- data_select(data,frames,datacol,subjcol,chancol,othvarcol,
                        select_subj,
                        select_chan)
        # plot
        subvar <- variable.names(dta)[subjcol]
        #dta$groupvar <- rownames(dta)
        #########
        dta$Info <- NA
        for (i in 1 : dim(dta)[1]){
                info1 <- paste0(as.character(dta[i,othvarcol]),collapse=";")
                dta$Info[i] <- paste(dta[i,chancol],dta[i,subjcol],info1,sep=";")
        }
        ###########
        datalong <- melt(dta,
                         id=c(variable.names(dta)[c(subjcol,chancol,othvarcol)],
                              "Info"))
        datalong <- datalong[order(datalong$Info),]
        datalongorder <- datalong
        datalongorder$frames <- rep(frames,length(datalongorder[,1])/length(frames))
        if (is.null(outlinesub) == FALSE){  # how to outline several subjects (and color)
                data2 <- subset(datalongorder,datalongorder[,1]==outlinesub)
                plot <- ggplot(datalongorder,
                               aes(x=frames,y=value,group=Info,...))+
                        geom_line()+
                        geom_line(data=data2,aes(x=frames,y=value),col=outcolor)
        # need warning for covering geom_line()
        } else {
                plot <- ggplot(datalongorder,
                               aes(x=frames,y=value,group=Info))+
                        geom_line()
        }
        return(plot)
}
scalp_plot <- function(chan_data,frames,
                       datacol,chancol,cpvarcol=NULL,
                       ylim=c(-10,10),color = c("blue","red")){
        if ((dim(chan_data)[2]) > length(datacol)+length(chancol)+length(cpvarcol)){
                stop("input object must only contain Data, Channel and Compare_variable!")
        }
        get_legend<-function(myggplot){
                tmp <- ggplot_gtable(ggplot_build(myggplot))
                leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
                legend <- tmp$grobs[[leg]]
                return(legend)
        }
        erplay <- rbind(c(NA,NA,NA,NA,"Fp1","Fpz","Fp2",NA,NA,NA,NA),
                        c(NA,NA,NA,"AF7","AF3","AFz","AF4","AF8",NA,NA,NA),
                        c(NA,"F7","F5","F3","F1","Fz","F2","F4","F6","F8",NA),
                        c("FT9","FT7","FC5","FC3","FC1","FCz","FC2","FC4","FC6","FT8","FT10"),
                        c("T9","T7","C5","C3","C1","CZ","C2","C4","C6","T8","T10"),
                        c("TP9","TP7","CP5","CP3","CP1","CPz","CP2","CP4","CP6","TP8","TP10"),
                        c("P9","P7","P5","P3","P1","PZ","P2","P4","P6","P8","P10"),
                        c(NA,NA,"PO9","PO7","PO3","POz","PO4","PO8","PO10",NA,NA),
                        c(NA,NA,NA,NA,"O1","Oz","O2",NA,NA,NA,NA),
                        c(NA,NA,NA,NA,"I1","Iz","I2",NA,NA,NA,NA))
        dtaall <- chan_data
        names(dtaall)[chancol] <- "Channel"
        plotlist <- list()
        if (is.null(cpvarcol)){
                 for (i in 1:length(levels(dtaall[,chancol]))){
                        dta <- subset(dtaall,dtaall[,chancol] == levels(dtaall[,chancol])[i])
                        dta2 <- melt(dta,id = "Channel")
                        dta2 <- dta2[order(dta2$Channel),]
                        dta2$frames <- rep(frames,dim(dta2)[1]/length(frames))
                        plotlist[[i]] <- ggplot(dta2,aes(x = frames, y = value))+
                                geom_line(col = color[1])+
                                ylim(ylim[1],ylim[2])+
                                theme_bw()+
                                theme(legend.position="none")+
                                labs(list(title=levels(dtaall[,chancol])[i]))+
                                theme(axis.title.y = element_blank(),axis.title.x = element_blank(),
                                      axis.text = element_text(size = 5),
                                      axis.text.x = element_blank(),
                                      axis.line = element_blank(),
                                      axis.ticks =  element_blank(),
                                      panel.border =element_blank())
                        names(plotlist)[i] <-levels(dtaall[,chancol])[i]
                }
                for (i in 1 : 10 ){
                        for (j in 1:11){
                                if (!toupper(erplay[i,j]) %in% toupper(dtaall$Channel)){
                                        erplay[i,j] = NA
                                }
                        }
                }
                print("The following electrodes will not be plotted :")
                print(as.character(dtaall$Channel[!toupper(dtaall$Channel) %in% toupper(erplay)]))
                printlist <- plotlist[which(toupper(names(plotlist)) %in% toupper(erplay))]
                erplaynum <- matrix(NA,10,11)
                for (i in 1:10){
                        for (j in 1:11){
                                if (toupper(erplay[i,j]) %in% toupper(dtaall$Channel)){
                                        erplaynum[i,j] = which(toupper(names(printlist)) %in% toupper(erplay[i,j]))
                                }
                        }
                }
                # printlist[[length(printlist)+1]] <- legend
                # erplaynum[1,11] <- length(printlist)
                plot <- do.call("grid.arrange", list(grobs=printlist,layout_matrix=erplaynum))
        } else {
                names(dtaall)[cpvarcol] <- "Condition"
                condlevel <- levels(as.factor(dtaall$Condition))
                if (length(color) != length(condlevel)){
                        stop("Color object must only be same as levels of compare varaible")
                }
                colvalue <- color[1:length(condlevel)]
                dta <- subset(dtaall,dtaall[,chancol] == levels(dtaall[,chancol])[2])
                dta2 <- melt(dta,id = c("Condition","Channel"))
                dta2 <- dta2[order(dta2$Condition),]
                dta2$Condition <- as.factor(dta2$Condition)
                dta2$frames <- rep(frames,dim(dta2)[1]/length(frames))
                flegend <- ggplot(dta2,aes(x=frames, y=value))+
                        geom_line(aes(col=Condition))+
                        ylim(ylim[1],ylim[2])+
                        theme_bw()+
                        theme_minimal()+
                        theme(legend.position="left")+
                        labs(list(title=levels(levels(dtaall[,chancol])[1])))+
                        theme(axis.title.y = element_blank(),
                              axis.title.x = element_blank(),
                              axis.text = element_text(size = 3),
                              axis.ticks = element_blank(),
                              axis.line = element_blank())+
                        scale_colour_manual(values= colvalue,name = names(chan_data)[cpvarcol])
                legend <- get_legend(flegend)
                for (i in 1:length(levels(dtaall[,chancol]))){
                        dta <- subset(dtaall,dtaall[,chancol] == levels(dtaall[,chancol])[i])
                        dta2 <- melt(dta,id = c("Condition","Channel"))
                        dta2 <- dta2[order(dta2$Condition),]
                        dta2$Condition <- as.factor(dta2$Condition)
                        dta2$frames <- rep(frames,dim(dta2)[1]/length(frames))
                        plotlist[[i]] <- ggplot(dta2,aes(x = frames, y = value,group=Condition))+
                                geom_line(aes(col=Condition))+
                                ylim(ylim[1],ylim[2])+
                                scale_colour_manual(values= colvalue,name = names(chan_data)[cpvarcol])+
                                theme_bw()+
                                theme(legend.position="none")+
                                labs(list(title=levels(dtaall[,chancol])[i]))+
                                theme(axis.title.y = element_blank(),axis.title.x = element_blank(),
                                      axis.text = element_text(size = 5),
                                      axis.text.x = element_blank(),
                                      axis.line = element_blank(),
                                      axis.ticks =  element_blank(),
                                      panel.border =element_blank() )
                        names(plotlist)[i] <-levels(dtaall[,chancol])[i]
                }
                for (i in 1 : 10 ){
                        for (j in 1:11){
                                if (!toupper(erplay[i,j]) %in% toupper(dtaall$Channel)){
                                        erplay[i,j] = NA
                                }
                        }
                }
                print("The following electrodes will not be plotted :")
                print( as.character(dtaall$Channel[!toupper(dtaall$Channel) %in% toupper(erplay)])[duplicated(as.character(dtaall$Channel[!toupper(dtaall$Channel) %in% toupper(erplay)]))])
                printlist <- plotlist[which(toupper(names(plotlist)) %in% toupper(erplay))]
                erplaynum <- matrix(NA,10,11)
                for (i in 1:10){
                        for (j in 1:11){
                                if (toupper(erplay[i,j]) %in% toupper(dtaall$Channel)){
                                        erplaynum[i,j] = which(toupper(names(printlist)) %in% toupper(erplay[i,j]))
                                }
                        }
                }
                printlist[[length(printlist)+1]] <- legend
                erplaynum[1,11] <- length(printlist)
                plot <- do.call("grid.arrange", list(grobs=printlist,layout_matrix=erplaynum))
        }
        return(plot)
}
ciplot <- function(data,frames,datacol,subjcol=NULL,chancol=NULL,othvarcol=NULL,
                   cpvarcol=NULL, signal_line_col="black",
                   # general argument
                   level = 0.95, 
                   ci.alpha = 0.3,
                   # select type
                   type = "boot", # or "scb"
                   # choose scb 
                   cv.degree,
                   cv.interval = NULL,
                   scbtype = "normal", # or "bootstrap"
                   # choose boot
                   fun=samplemean <- function(x, d){return(mean(x[d]))},
                   bootnum=500,
                   # data_selection
                   select_subj = NULL,
                   select_chan = NULL,...){
        # need some check function

        # data selection
        dta <- data_select(data,frames,datacol,subjcol,chancol,othvarcol,
                           select_subj,
                           select_chan,...)
        if (!is.null(cpvarcol)){dta[,cpvarcol] = as.factor(as.character(dta[,cpvarcol]))}
        if (! type %in% c("boot","scb"))
                stop("type should be 'boot' or 'scb' !")
        if (type == "scb"){
                if (! scbtype %in% c("normal", "bootstrap")){stop("scbtype should be 'normal' or 'bootstrap'")}
                if (is.null(cpvarcol)){
                        dtalist <- list()
                        for (i in 1:length(levels(dta[,chancol]))){
                                dtachan <- subset( dta,dta[,chancol] == levels(dta[,chancol])[i])
                                h <- cv.select(frames,dtachan[,datacol],
                                               degree = cv.degree, interval = cv.interval)
                                scbchan <- scb.mean(frames, dtachan[,datacol], 
                                                    bandwidth = h, level = level,
                                                    scbtype = scbtype,...)
                                dtalist[[i]] <- data.frame(FUN = scbchan$nonpar)
                                if (scbtype == "bootstrap"){
                                        dtalist[[i]]$Q1 <- scbchan$bootscb[,1]
                                        dtalist[[i]]$Q2 <- scbchan$bootscb[,2]
                                }
                                if (scbtype == "normal"){
                                        dtalist[[i]]$Q1 <- scbchan$normscb[,1]
                                        dtalist[[i]]$Q2 <- scbchan$normscb[,2]
                                }
                                dtalist[[i]]$Channel <- levels(dta[,chancol])[i]
                                dtalist[[i]]$frames <- frames
                        }
                        plotdata <- dtalist[[1]]
                        for (i in 2:length(dtalist)){plotdata <- rbind(plotdata,dtalist[[i]])}
                        plot <- ggplot(plotdata,aes(x=frames))+
                                geom_ribbon(aes(x=frames, ymax=Q2, ymin=Q1),
                                            fill=signal_line_col,alpha=ci.alpha)+ # set alpha
                                geom_line(aes(y = FUN),col=signal_line_col)+ 
                                labs(y="Signal")+# Need some changes ?
                                facet_wrap(~Channel)+
                                theme(legend.position="none")
                        
                } else {
                        dtalist <- list()
                        for (i in 1:length(levels(dta[,chancol]))){
                                dtacplist <- list()
                                for (j in 1 : length(levels(dta[,cpvarcol]))){
                                        dtachan <- subset(dta,
                                                          dta[,chancol] == levels(dta[,chancol])[i] & dta[,cpvarcol] == levels(dta[,cpvarcol])[j])
                                        h <- cv.select(frames,dtachan[,datacol],
                                                       degree = cv.degree, interval = cv.interval)
                                        scbchan <- scb.mean(frames, dtachan[,datacol], 
                                                            bandwidth = h, level = level,
                                                            scbtype = scbtype)
                                        dtacplist[[j]] <- data.frame(FUN = scbchan$nonpar)
                                        if (scbtype == "bootstrap"){
                                                dtacplist[[j]]$Q1 <- scbchan$bootscb[,1]
                                                dtacplist[[j]]$Q2 <- scbchan$bootscb[,2]
                                        }
                                        if (scbtype == "normal"){
                                                dtacplist[[j]]$Q1 <- scbchan$normscb[,1]
                                                dtacplist[[j]]$Q2 <- scbchan$normscb[,2]
                                        }
                                        dtacplist[[j]]$Channel <- levels(dta[,chancol])[i]
                                        dtacplist[[j]]$frames <- frames
                                        dtacplist[[j]]$Condition <- levels(dta[,cpvarcol])[j]
                                }
                                dtalist[[i]] <- dtacplist[[1]]
                                for (k in 2:length(dtacplist)){dtalist[[i]] <- rbind(dtalist[[i]],dtacplist[[k]])}
                        }
                        plotdata <- dtalist[[1]]
                        for (i in 2:length(dtalist)){plotdata <- rbind(plotdata,dtalist[[i]])}
                        plot <- ggplot(plotdata,aes(x=frames,group=Condition))+
                                geom_ribbon(aes(x=frames, ymax=Q2, ymin=Q1,fill=Condition),
                                            alpha=0.5)+ # set alpha
                                geom_line(aes(y = FUN,col=Condition))+ 
                                labs(y="Signal")+# Need some changes ?
                                facet_wrap(~Channel)+
                                scale_color_manual(values = c("red","blue"),name = colnames(dta)[cpvarcol])+
                                scale_fill_manual(values = c("red","blue"),name = colnames(dta)[cpvarcol])
                }
        } else {
                bootstrap <- function(x,bootnum,bootfun,bootintval,quantilenum,...){
                        boot_result <- boot(x,statistic = bootfun,R = bootnum,...) #fun
                        return(quantile(boot_result$t,bootintval,na.rm = T)[quantilenum])
                }
                bootintval <- c((0.5-level/2),(level/2+0.5))
                bootalpha <- ci.alpha
                # Do you want to compare between variable ?
                if (is.null(cpvarcol)==TRUE){
                        data_fun <- data_summarize(dta,frames,datacol,subjcol,chancol,othvarcol,
                                                   summarycol = c(chancol),fun=fun)
                        data_Q1 <- data_summarize(dta,frames,datacol,subjcol,chancol,othvarcol,
                                                  summarycol = c(chancol),
                                                  fun=bootstrap,bootnum=bootnum,bootfun=fun,
                                                  bootintval=bootintval,quantilenum=1)
                        data_Q2 <- data_summarize(dta,frames,datacol,subjcol,chancol,othvarcol,
                                                  summarycol = c(chancol),
                                                  fun=bootstrap,bootnum=bootnum,bootfun=fun,
                                                  bootintval=bootintval,quantilenum=2)
                        data_fun_long <- melt(data_fun,id=c(colnames(dta)[chancol]))
                        data_fun_long <- data_fun_long[order(data_fun_long[,1],
                                                             data_fun_long[,2],
                                                             data_fun_long[,3]),]
                        colnames(data_fun_long)[3] <- "FUN"
                        data_Q1_long <- melt(data_Q1,id=c(colnames(dta)[chancol]))
                        data_Q1_long <- data_Q1_long[order(data_Q1_long[,1],
                                                           data_Q1_long[,2],
                                                           data_Q1_long[,3]),]
                        data_Q2_long <- melt(data_Q2,id=c(colnames(dta)[chancol]))
                        data_Q2_long <- data_Q2_long[order(data_Q2_long[,1],
                                                           data_Q2_long[,2],
                                                           data_Q2_long[,3]),]
                        data_fun_long$Q1 <- data_Q1_long[,3]
                        data_fun_long$Q2 <- data_Q2_long[,3]
                        data_fun_long$frames <- c(rep(frames,(dim(data_fun_long)[1]/length(frames)))) #change
                        colnames(data_fun_long)[1] <- c("Channel")
                        plot <- ggplot(data_fun_long,aes(x=frames))+
                                geom_ribbon(aes(x=frames, ymax=Q2, ymin=Q1),
                                            fill=signal_line_col,
                                            alpha=bootalpha)+
                                geom_line(aes(y = FUN),
                                          col=signal_line_col)+ 
                                labs(y="Signal")+# Need some changes ?
                                facet_wrap(~Channel)+
                                theme(legend.position="none")
                } else {
                        dta[,cpvarcol] <- as.factor(dta[,cpvarcol])
                        dta[,chancol] <- as.factor(dta[,chancol])
                        data_fun <- data_summarize(dta,frames,datacol,subjcol,chancol,othvarcol,
                                                   summarycol = c(chancol,cpvarcol),fun=fun)
                        data_Q1 <- data_summarize(dta,frames,datacol,subjcol,chancol,othvarcol,
                                                  summarycol = c(chancol,cpvarcol),
                                                  fun=bootstrap,bootnum=bootnum,bootfun=fun,
                                                  bootintval=bootintval,quantilenum=1)
                        data_Q2 <- data_summarize(dta,frames,datacol,subjcol,chancol,othvarcol,
                                                  summarycol = c(chancol,cpvarcol),
                                                  fun=bootstrap,bootnum=bootnum,bootfun=fun,
                                                  bootintval=bootintval,quantilenum=2)
                        data_fun_long <- melt(data_fun,id=c(colnames(dta)[chancol],colnames(dta)[cpvarcol]))
                        data_fun_long <- data_fun_long[order(data_fun_long[,1],
                                                             data_fun_long[,2],
                                                             data_fun_long[,3]),]
                        colnames(data_fun_long)[4] <- "FUN"
                        data_Q1_long <- melt(data_Q1,id=c(colnames(dta)[chancol],colnames(dta)[cpvarcol]))
                        data_Q1_long <- data_Q1_long[order(data_Q1_long[,1],
                                                           data_Q1_long[,2],
                                                           data_Q1_long[,3]),]
                        data_Q2_long <- melt(data_Q2,id=c(colnames(dta)[chancol],colnames(dta)[cpvarcol]))
                        data_Q2_long <- data_Q2_long[order(data_Q2_long[,1],
                                                           data_Q2_long[,2],
                                                           data_Q2_long[,3]),]
                        data_fun_long$Q1 <- data_Q1_long[,4]
                        data_fun_long$Q2 <- data_Q2_long[,4]
                        data_fun_long$frames <- c(rep(frames,(dim(data_fun_long)[1]/length(frames))))
                        colnames(data_fun_long)[1:2] <- c("Channel","Condition")
                        plot <- ggplot(data_fun_long,aes(x=frames,group=Condition))+
                                geom_ribbon(aes(x=frames, ymax=Q2, ymin=Q1,fill=Condition),
                                            alpha=bootalpha)+
                                geom_line(aes(y = FUN,col=Condition))+ 
                                labs(y="Signal")+# Need some changes ?
                                facet_wrap(~Channel)
                }
        }
        return(plot)
}
chan_test <- function(data,datacol,chancol,
                      testtype="erpfatest",
                      # do not specify model.matrix like original test function###
                      design_model,
                      # do not specify model.matrix like original test function
                      design0_model=NULL,...){
        
        dta <- data
        dta[,chancol]=as.factor(dta[,chancol])
        levelnum <- length(levels(dta[,chancol]))
        if (levelnum == 1) {
                design <- model.matrix(design_model,data=data)
                if (is.null(design0_model)==F){
                        design0 <- model.matrix(design0_model,data=data)
                }
                if ( testtype == "erpavetest" ){
                       test_list <- erpavetest(dta[,datacol],design,design0,...)
                }
                if (testtype == "erpfatest") {
                        test_list <- erpfatest(dta[,datacol],design,design0,...)
                }
                if (testtype == "erptest") {
                        test_list <- erptest(dta[,datacol], design, design0,...)
                }
                if (testtype == "gbtest") {
                        test_list <- gbtest(dta[,datacol], design, design0,...)
                }
        } else {
                test_list=list()
                dta_list=list()
                for (i in 1:levelnum) {
                        dta_list[[i]] <- subset(dta,dta[,chancol]==(levels(dta[,chancol])[i]))
                        design <- model.matrix(design_model,data=dta_list[[i]])
                        if (is.null(design0_model)==F){
                                design0 <- model.matrix(design0_model,data=dta_list[[i]])
                        }
                        if ( testtype == "erpavetest" ){
                                test_list[[i]] <- erpavetest(dta_list[[i]][,datacol],
                                                             design,design0,...)
                        }
                        if (testtype == "erpfatest") {
                                test_list[[i]] <- erpfatest(dta_list[[i]][,datacol],
                                                            design,design0,...)
                        }
                        if (testtype == "erptest") {
                                test_list[[i]] <- erptest(dta_list[[i]][,datacol],
                                                          design, design0,...)
                        }
                        if (testtype == "gbtest") {
                                test_list[[i]] <- gbtest(dta_list[[i]][,datacol],
                                                         design, design0,...)
                        }
                        names(test_list)[i] <- levels(dta[,chancol])[i]
                }
        }
        return(test_list)
}
coord_plot <- function(tests_rst,frames,show,
                       elect_coord=readRDS("Elect_Location.Rdata"),
                       type = "test", logscale  = T,
                       point_size = 18,show_na_ele = F,
                       text = T,text_size = 3,text_col = "black",
                       circle = T,nose = T,cir_nose_col="black"){
        # some check function
        
        if (!type %in% c("test","pval","correctedpval","signal","r2")) {
                stop("Available projectios are: test,pval,correctedpval,signal,r2, \n\t\tThe projection specified is: ", 
                     type, call. = F)
        }
        num <- length(tests_rst)
        rstlist <- list()
        for (i in 1:num){
                rstlist[[i]] <- data.frame(pval = tests_rst[[i]]$pval)
                rstlist[[i]]$correctedpval <- tests_rst[[i]]$correctedpval
                rstlist[[i]]$test <- tests_rst[[i]]$test
                rstlist[[i]]$signal <- as.numeric(tests_rst[[i]]$signal)
                rstlist[[i]]$r2 <- tests_rst[[i]]$r2
                rstlist[[i]]$frame <- frames
        }
        for (i in 1:num) {
                names(rstlist)[i] <- names(tests_rst)[i]
                rstlist[[i]]$Electrode <- names(rstlist)[i]
        }
        sum_rstlist <- list()
        for (i in 1:num){
                sum_rstlist[[i]] <- rstlist[[i]][rstlist[[i]]$frame %in% show,]
        }
        sum_rstlist_fun <- list()
        sum_rstlist_fun <- sum_rstlist
        plotdta <- data.frame(sum_rstlist_fun[[1]])
        for (i in 2:num){
                plotdta <- rbind(plotdta,as.data.frame(sum_rstlist_fun[[i]]))
                }
        print("The following electrodes will not be plot :")
        print(as.character(plotdta$Electrode[!toupper(plotdta$Electrode) %in% toupper(elect_coord$Electrode)]))
        currdta <- subset(plotdta,toupper(plotdta$Electrode) %in% toupper(elect_coord$Electrode))
        currdta$Electrode <- toupper(currdta$Electrode)
        currele <- elect_coord
        currele$Electrode <- toupper(currele$Electrode)
        currdtaele <- merge(currele,currdta,all=T)
        circleFun <- function(center = c(0,0),diameter = 1, npoints = 100){
                r = diameter / 2
                tt <- seq(0,2*pi,length.out = npoints)
                xx <- center[1] + r * cos(tt)
                yy <- center[2] + r * sin(tt)
                return(data.frame(x = xx, y = yy))
        }
        diameter <- max(dist(currdtaele[,2:3]))+point_size*0.03
        datcir <- circleFun(c(mean(as.numeric(currdtaele$x)),
                              mean(as.numeric(currdtaele$y))),
                            diameter,npoints = 100)
        datnose <- data.frame(x=c(datcir[23,1],0,-datcir[23,1]),
                              y=c(datcir[23,2],datcir[23,2]+0.3,datcir[23,2]))
        currdtaele <- as.data.frame(currdtaele)
        currdtaele$x <- as.numeric(currdtaele$x)
        currdtaele$y <- as.numeric(currdtaele$y)
        if (show_na_ele == F){
                currdtaele = na.omit(currdtaele)
        }
        if (type == "pval"){
                if (logscale == T){
                        plot <- ggplot(currdtaele,aes(x=x,y=y))+
                                geom_point(aes(fill= -log(pval)),
                                           col=cir_nose_col,size=point_size,pch=21)+
                                geom_text(aes(label=Electrode),
                                          size=text_size,
                                          alpha = ifelse(text==T,1,0),
                                          col=text_col)+
                                geom_path(data=datcir,aes(x,y),
                                          alpha = ifelse(circle==T,1,0),
                                          col = cir_nose_col)+
                                geom_path(data=datnose,aes(x,y),
                                          alpha = ifelse(nose==T,1,0),
                                          col = cir_nose_col)+
                                scale_fill_gradient2(high="red",low = "blue",midpoint = -log(0.05),
                                                     na.value = "grey50",
                                                     limit=c(0,-log(min(currdtaele$pval))))
                }
                if (logscale == F){
                        plot <- ggplot(currdtaele,aes(x=x,y=y))+
                                geom_point(aes(fill= pval),
                                           col=cir_nose_col,size=point_size,pch=21)+
                                geom_text(aes(label=Electrode),
                                          size=text_size,
                                          alpha = ifelse(text==T,1,0),
                                          col=text_col)+
                                geom_path(data=datcir,aes(x,y),
                                          alpha = ifelse(circle==T,1,0),
                                          col = cir_nose_col)+
                                geom_path(data=datnose,aes(x,y),
                                          alpha = ifelse(nose==T,1,0),
                                          col = cir_nose_col)+
                                scale_fill_gradient2(low="red",high = "blue",midpoint = 0.05,
                                                     na.value = "grey50",
                                                     limit=c(0,max(currdtaele$pval)),
                                                     guide = guide_colorbar(reverse = T))
                }
        }
        if (type == "correctedpval"){
                if (logscale == T){
                        plot <- ggplot(currdtaele,aes(x=x,y=y))+
                                geom_point(aes(fill= -log(correctedpval)),
                                           col=cir_nose_col,size=point_size,pch=21)+
                                geom_text(aes(label=Electrode),
                                          size=text_size,
                                          alpha = ifelse(text==T,1,0),
                                          col=text_col)+
                                geom_path(data=datcir,aes(x,y),
                                          alpha = ifelse(circle==T,1,0),
                                          col = cir_nose_col)+
                                geom_path(data=datnose,aes(x,y),
                                          alpha = ifelse(nose==T,1,0),
                                          col = cir_nose_col)+
                                scale_fill_gradient2(high="red",low = "blue",midpoint = -log(0.05),
                                                     na.value = "grey50",
                                                     limit=c(0,-log(min(currdtaele$correctedpval))))
                }
                if (logscale == F){
                        plot <- ggplot(currdtaele,aes(x=x,y=y))+
                        geom_point(aes(fill= correctedpval),
                                   col=cir_nose_col,size=point_size,pch=21)+
                        geom_text(aes(label=Electrode),
                                  size=text_size,
                                  alpha = ifelse(text==T,1,0),
                                  col=text_col)+
                        geom_path(data=datcir,aes(x,y),
                                  alpha = ifelse(circle==T,1,0),
                                  col = cir_nose_col)+
                        geom_path(data=datnose,aes(x,y),
                                  alpha = ifelse(nose==T,1,0),
                                  col = cir_nose_col)+
                        scale_fill_gradient2(low="red",high = "blue",midpoint = 0.05,
                                             na.value = "grey50",
                                             limit=c(0,max(currdtaele$correctedpval)),
                                             guide =  guide_colorbar(reverse = T))
                }
        }
        if (type == "test"){
                if (logscale == T){
                        plot <- ggplot(currdtaele,aes(x=x,y=y))+
                                geom_point(aes(fill=log(test)),
                                           col=cir_nose_col,size=point_size,pch=21)+
                                geom_text(aes(label=Electrode),
                                          size=text_size,alpha = ifelse(text==T,1,0),col=text_col)+
                                geom_path(data=datcir,aes(x,y),
                                          alpha = ifelse(circle==T,1,0),col = cir_nose_col)+
                                geom_path(data=datnose,aes(x,y),
                                          alpha = ifelse(nose==T,1,0),
                                          col = cir_nose_col)+
                                scale_fill_gradient2(high="red",low = "blue",
                                                     midpoint = median(log(currdtaele$test)),
                                                     na.value = "grey50",
                                                     limit=c(min(log(currdtaele$test)),
                                                             max(log(currdtaele$test))))
                }
                if (logsclae == F){
                        plot <- ggplot(currdtaele,aes(x=x,y=y))+
                                geom_point(aes(fill=test),
                                           col=cir_nose_col,size=point_size,pch=21)+
                                geom_text(aes(label=Electrode),
                                          size=text_size,
                                          alpha = ifelse(text==T,1,0),
                                          col=text_col)+
                                geom_path(data=datcir,aes(x,y),
                                          alpha = ifelse(circle==T,1,0),
                                          col = cir_nose_col)+
                                geom_path(data=datnose,aes(x,y),
                                          alpha = ifelse(nose==T,1,0),
                                          col = cir_nose_col)+
                                scale_fill_gradient2(high="red",low = "blue",
                                                     midpoint = median(currdtaele$test),
                                                     na.value = "grey50",
                                                     limit=c(min(currdtaele$test),
                                                             max(currdtaele$test)))
                }
        }
        if (type == "signal"){
                plot <- ggplot(currdtaele,aes(x=x,y=y))+
                        geom_point(aes(fill=signal),col=cir_nose_col,size=point_size,pch=21)+
                        geom_text(aes(label=Electrode),
                                  size=text_size,
                                  alpha = ifelse(text==T,1,0),
                                  col=text_col)+
                        geom_path(data=datcir,aes(x,y),
                                  alpha = ifelse(circle==T,1,0),
                                  col = cir_nose_col)+
                        geom_path(data=datnose,aes(x,y),
                                  alpha = ifelse(nose==T,1,0),
                                  col = cir_nose_col)+
                         scale_fill_gradient2(high="red",low = "blue",
                                                     midpoint = median(currdtaele$signal),
                                                     na.value = "grey50",
                                                     limit=c(min(currdtaele$signal),
                                                             max(currdtaele$signal)))
        }
        if (type == "r2"){
                plot <- ggplot(currdtaele,aes(x=x,y=y))+
                        geom_point(aes(fill=r2),col=cir_nose_col,size=point_size,pch=21)+
                        geom_text(aes(label=Electrode),
                                  size=text_size,
                                  alpha = ifelse(text==T,1,0),
                                  col=text_col)+
                        geom_path(data=datcir,aes(x,y),
                                  alpha = ifelse(circle==T,1,0),
                                  col = cir_nose_col)+
                        geom_path(data=datnose,aes(x,y),
                                  alpha = ifelse(nose==T,1,0),
                                  col = cir_nose_col)+
                        scale_fill_continuous(high="yellow",low = "red",
                                                     na.value = "grey50",
                                                     limit=c(0,1))
        }
        return(plot)
}
mcplot <- function(tests_rst,
                   type = "test", # type = "test" or "signal"
                   multi = F, # IMPORTANT : depend on your tests rst 
                   # IMPORTANT : Work only if type = test
                   cor = FALSE, 
                   # IMPORTANT : depend on your tests rst and data
                   data,frames,datacol,subjcol=NULL,chancol=NULL,othvarcol=NULL,cpvarcol=NULL,
                   significant_col = "pink" , significant_alpha = 0.2,
                   
                   # IMPORTANT : work only if type = signal
                   ci.type = "No", #c("scb","boot","no"), 
                   level = 0.95,
                   ci.alpha = 0.3,
                   # sub
                   cv.degree,
                   cv.interval = NULL,
                   scbtype = "normal",
                   # boot
                   fun = samplemean <- function(x, d){return(mean(x[d]))},
                   bootnum = 10,... ) {
        
        options(warn=-1) 
        # some check functions
        
        if (type == "test") {
                if (multi==FALSE){
                        data <- data.frame(signal=as.numeric(tests_rst$signal))
                        data$frames = frames
                        data$significant <- 
                                ifelse(data$frames %in% data$frames[tests_rst$significant],
                                       "sig","non-sig")
                        data$sign_frames <- 
                                ifelse(data$frames %in% data$frames[tests_rst$significant],
                                       data$frames,NA)
                        data$group <- rep(0,length(data$signal))
                        data$r2 <- tests_rst$r2
                        if (cor == TRUE){
                                plot <- ggplot(data,
                                               aes(x=frames,y=sign(signal)*sqrt(r2),group=group))+
                                        geom_vline(data=data,
                                                   aes(xintercept = sign_frames,
                                                       col=significant_col),
                                                   alpha=significant_alpha)+
                                        geom_line()+
                                        labs(y = "Correlation")+
                                        theme(legend.position="none")
                        } else {
                                plot <- ggplot(data,aes(x=frames,y=signal,group=group))+
                                        geom_vline(data=data,
                                                   aes(xintercept = sign_frames),
                                                   col=significant_col,
                                                   alpha=significant_alpha)+
                                        geom_line()+
                                        labs(y = "Signal")+
                                        theme(legend.position="none")
                        }
                } else {
                        listlen <- length(tests_rst)
                        data_list <- list()
                        for (k in 1:listlen){
                                data_list[[k]] <- data.frame(signal=as.numeric(tests_rst[[k]]$signal))
                                data_list[[k]]$frames = frames
                                data_list[[k]]$significant<-ifelse(data_list[[k]]$frames %in% data_list[[k]]$frames[tests_rst[[k]]$significant],"sig","non-sig")
                                data_list[[k]]$sign_frames <- ifelse(data_list[[k]]$frames %in% data_list[[k]]$frames[tests_rst[[k]]$significant],data_list[[k]]$frames,NA)
                                data_list[[k]]$group <- rep(0,length(data_list[[k]]$signal))
                                data_list[[k]]$r2 <- tests_rst[[k]]$r2
                                data_list[[k]]$Channel <- names(tests_rst)[k]
                        }
                        data_plot <- data_list[[1]]
                        for (j in 2 : listlen){
                                data_plot <- rbind(data_plot,data_list[[j]])
                        }
                        if (cor == TRUE){
                                plot <- ggplot(data_plot,aes(x=frames,y=sign(signal)*sqrt(r2),group=group))+
                                        geom_vline(data=data_plot,
                                                   aes(xintercept = sign_frames),
                                                   col=significant_col,
                                                   alpha=significant_alpha)+
                                        geom_line()+
                                        facet_wrap(~Channel)+
                                        labs(y = "Correlation")+
                                        theme(legend.position="none")
                        } else {
                                plot <- ggplot(data_plot,aes(x=frames,y=signal,group=group))+
                                        geom_vline(data=data_plot,
                                                   aes(xintercept = sign_frames),
                                                   col=significant_col,
                                                   alpha=significant_alpha)+
                                        geom_line()+
                                        labs(y="Signal")+
                                        facet_wrap(~Channel)+
                                        theme(legend.position="none")
                        }
                }
        } 
        if (type == "signal") {
                dta <- data
                if (!ci.type %in% c("scb","boot","No")){stop(" ci.type should be 'scb','boot' or 'No'")}
                if (multi == F ){
                        data_sign <- data.frame(frames=frames)
                        data_sign$significant <- 
                                ifelse(data_sign$frames %in% data_sign$frames[tests_rst$significant],"sig","non-sig")
                        data_sign$sign_frames <- 
                                ifelse(data_sign$frames %in% data_sign$frames[tests_rst$significant],data_sign$frames,NA)
                        data_sign$group <- rep(0,length(frames))
                        if (ci.type == "boot"){
                                plot <- ciplot(dta,frames,
                                               datacol,subjcol,chancol,othvarcol=othvarcol,
                                               cpvarcol,level = level,ci.alpha = ci.alpha,type=ci.type,
                                               fun = fun,bootnum=bootnum,...)+          
                                        geom_vline(data=data_sign,
                                                   aes(xintercept = sign_frames),
                                                   col=significant_col,
                                                   alpha=significant_alpha)+
                                        labs(y="Signal")
                        }
                        if (ci.type == "scb"){
                                plot <- ciplot(dta,frames,
                                               datacol,subjcol,chancol,othvarcol=othvarcol,
                                               cpvarcol,level = level,ci.alpha = ci.alpha,type=ci.type,
                                               cv.degree = cv.degree,
                                               cv.interval = cv.interval,
                                               scbtype = scbtype,...)+          
                                        geom_vline(data=data_sign,
                                                   aes(xintercept = sign_frames),
                                                   col=significant_col,
                                                   alpha=significant_alpha)+
                                        labs(y="Signal") 
                        }
                        if (ci.type == "No"){
                                ###
                        }
                }
                if (multi == T) {
                        if (ci.type == "boot"){
                                bootintval <- c((0.5-level/2),(level/2+0.5))
                                bootalpha <- ci.alpha
                                bootstrap <- function(x,bootnum,bootfun,bootintval=c(0.025,0.975),quantilenum,...){
                                        boot_result <- boot(x,statistic = bootfun,R = bootnum,...) #fun
                                        return(quantile(boot_result$t,bootintval,na.rm = T)[quantilenum])}
                                listlen <- length(tests_rst)
                                test_list = list()
                                for (i in 1: listlen){
                                        test_list[[i]] <- data.frame(frames=frames)
                                        test_list[[i]]$significant <- 
                                                ifelse(test_list[[i]]$frames %in% test_list[[i]]$frames[tests_rst[[i]]$significant],"sig","non-sig")
                                        test_list[[i]]$sign_frames <- 
                                                ifelse(test_list[[i]]$frames %in% test_list[[i]]$frames[tests_rst[[i]]$significant],test_list[[i]]$frames,NA)
                                        test_list[[i]]$group <- rep(0,length(frames))
                                        test_list[[i]]$Channel <- names(tests_rst)[i]
                                }
                                test_plot <- test_list[[1]]
                                for (k in 2:listlen){
                                        test_plot <- rbind(test_plot,test_list[[k]])
                                }
                                if (is.null(cpvarcol)){
                                        data_fun <- data_summarize(dta,frames,
                                                                   datacol,subjcol,chancol,othvarcol,
                                                                   summarycol = c(chancol),fun=fun)
                                        data_Q1 <- data_summarize(dta,frames,
                                                                  datacol,subjcol,chancol,othvarcol,
                                                                  summarycol = c(chancol),
                                                                  fun=bootstrap,
                                                                  bootnum=bootnum,bootfun=fun,
                                                                  bootintval=bootintval,quantilenum=1)
                                        data_Q2 <- data_summarize(dta,frames,
                                                                  datacol,subjcol,chancol,othvarcol,
                                                                  summarycol = c(chancol),
                                                                  fun=bootstrap,bootnum=bootnum,bootfun=fun,
                                                                  bootintval=bootintval,quantilenum=2)
                                        data_fun_long <- melt(data_fun,id=c(colnames(dta)[chancol]))
                                        data_fun_long <- data_fun_long[order(data_fun_long[,1],
                                                                             data_fun_long[,2],
                                                                             data_fun_long[,3]),]
                                        colnames(data_fun_long)[3] <- "FUN"
                                        data_Q1_long <- melt(data_Q1,id=c(colnames(dta)[chancol]))
                                        data_Q1_long <- data_Q1_long[order(data_Q1_long[,1],
                                                                           data_Q1_long[,2],
                                                                           data_Q1_long[,3]),]
                                        data_Q2_long <- melt(data_Q2,id=c(colnames(dta)[chancol]))
                                        data_Q2_long <- data_Q2_long[order(data_Q2_long[,1],
                                                                           data_Q2_long[,2],
                                                                           data_Q2_long[,3]),]
                                        data_fun_long$Q1 <- data_Q1_long[,3]
                                        data_fun_long$Q2 <- data_Q2_long[,3]
                                        data_fun_long$frames <- c(rep(frames,
                                                                      (dim(data_fun_long)[1]/length(frames))))
                                        colnames(data_fun_long)[1] <- c("Channel")
                                        data_plot <- merge(data_fun_long,
                                                           test_plot,
                                                           by =c("Channel","frames"))
                                        plot <- ggplot(data_plot,aes(x=frames))+
                                                geom_vline(aes(xintercept = sign_frames),
                                                           col=significant_col,
                                                           alpha=significant_alpha)+
                                                geom_ribbon(aes(x=frames, ymax=Q2, ymin=Q1),
                                                            alpha=ci.alpha)+
                                                geom_line(aes(y = FUN))+
                                                facet_wrap(~Channel)+
                                                labs(y="Signal")+
                                                theme(legend.position="none")
                                } else {
                                        dta[,cpvarcol] <- as.factor(dta[,cpvarcol])
                                        dta[,chancol] <- as.factor(dta[,chancol])
                                        data_fun <- data_summarize(dta,frames,
                                                                   datacol,subjcol,chancol,othvarcol,
                                                                   summarycol = c(chancol,cpvarcol),fun=fun)
                                        data_Q1 <- data_summarize(dta,frames,
                                                                  datacol,subjcol,chancol,othvarcol,
                                                                  summarycol = c(chancol,cpvarcol),
                                                                  fun=bootstrap,bootnum=bootnum,bootfun=fun,
                                                                  bootintval=bootintval,quantilenum=1)
                                        data_Q2 <- data_summarize(dta,frames,
                                                                  datacol,subjcol,chancol,othvarcol,
                                                                  summarycol = c(chancol,cpvarcol),
                                                                  fun=bootstrap,bootnum=bootnum,bootfun=fun,
                                                                  bootintval=bootintval,quantilenum=2)
                                        data_fun_long <- melt(data_fun,
                                                              id=c(colnames(dta)[chancol],
                                                                   colnames(dta)[cpvarcol]))
                                        data_fun_long <- data_fun_long[order(data_fun_long[,1],
                                                                             data_fun_long[,2],
                                                                             data_fun_long[,3]),]
                                        colnames(data_fun_long)[4] <- "FUN"
                                        data_Q1_long <- melt(data_Q1,
                                                             id=c(colnames(dta)[chancol],
                                                                  colnames(dta)[cpvarcol]))
                                        data_Q1_long <- data_Q1_long[order(data_Q1_long[,1],
                                                                           data_Q1_long[,2],
                                                                           data_Q1_long[,3]),]
                                        data_Q2_long <- melt(data_Q2,
                                                             id=c(colnames(dta)[chancol],
                                                                  colnames(dta)[cpvarcol]))
                                        data_Q2_long <- data_Q2_long[order(data_Q2_long[,1],
                                                                           data_Q2_long[,2],
                                                                           data_Q2_long[,3]),]
                                        data_fun_long$Q1 <- data_Q1_long[,4]
                                        data_fun_long$Q2 <- data_Q2_long[,4]
                                        data_fun_long$frames <- 
                                                c(rep(frames,(dim(data_fun_long)[1]/length(frames))))
                                        colnames(data_fun_long)[1:2] <- c("Channel","Condition")
                                        data_plot <- merge(data_fun_long,
                                                           test_plot,
                                                           by =c("Channel","frames"))
                                        plot <- ggplot(data_plot,aes(x=frames,group=Condition))+
                                                geom_vline(aes(xintercept = sign_frames),
                                                           col=significant_col,
                                                           alpha=significant_alpha)+
                                                geom_ribbon(aes(x=frames, ymax=Q2, ymin=Q1,fill=Condition),
                                                            alpha=ci.alpha)+
                                                geom_line(aes(y = FUN,col=Condition))+ 
                                                labs(y="Signal")+# Need some changes ?
                                                facet_wrap(~Channel)+
                                                theme(legend.position="none")
                                
                                }
                        }
                        if (ci.type == "scb"){
                                listlen <- length(tests_rst)
                                test_list = list()
                                for (i in 1: listlen){
                                        test_list[[i]] <- data.frame(frames=frames)
                                        test_list[[i]]$significant <- 
                                                ifelse(test_list[[i]]$frames %in% test_list[[i]]$frames[tests_rst[[i]]$significant],"sig","non-sig")
                                        test_list[[i]]$sign_frames <- 
                                                ifelse(test_list[[i]]$frames %in% test_list[[i]]$frames[tests_rst[[i]]$significant],test_list[[i]]$frames,NA)
                                        test_list[[i]]$group <- rep(0,length(frames))
                                        test_list[[i]]$Channel <- names(tests_rst)[i]
                                }
                                test_plot <- test_list[[1]]
                                for (k in 2:listlen){
                                        test_plot <- rbind(test_plot,test_list[[k]])
                                }
                                if (is.null(cpvarcol)){
                                        dtalist <- list()
                                        for (i in 1:length(levels(dta[,chancol]))){
                                                dtachan <- subset( dta,dta[,chancol] == levels(dta[,chancol])[i])
                                                h <- cv.select(frames,dtachan[,datacol],
                                                               degree = cv.degree, interval = cv.interval)
                                                scbchan <- scb.mean(frames, dtachan[,datacol], 
                                                                    bandwidth = h, level = level,
                                                                    scbtype = scbtype,...)
                                                dtalist[[i]] <- data.frame(FUN = scbchan$nonpar)
                                                if (scbtype == "bootstrap"){
                                                        dtalist[[i]]$Q1 <- scbchan$bootscb[,1]
                                                        dtalist[[i]]$Q2 <- scbchan$bootscb[,2]
                                                }
                                                if (scbtype == "normal"){
                                                        dtalist[[i]]$Q1 <- scbchan$normscb[,1]
                                                        dtalist[[i]]$Q2 <- scbchan$normscb[,2]
                                                }
                                                dtalist[[i]]$Channel <- levels(dta[,chancol])[i]
                                                dtalist[[i]]$frames <- frames
                                        }
                                        plotdata <- dtalist[[1]]
                                        for (i in 2:length(dtalist)){plotdata <- rbind(plotdata,dtalist[[i]])}
                                        data_plot <- merge(plotdata,
                                                           test_plot,
                                                           by =c("Channel","frames"))
                                        plot <- ggplot(data_plot,aes(x=frames))+
                                                geom_vline(aes(xintercept = sign_frames),
                                                           col=significant_col,
                                                           alpha=significant_alpha)+
                                                geom_ribbon(aes(x=frames, ymax=Q2, ymin=Q1),
                                                            fill=signal_line_col,alpha=ci.alpha)+ # set alpha
                                                geom_line(aes(y = FUN),col=signal_line_col)+
                                                facet_wrap(~Channel)+
                                                labs(y="Signal")+
                                                theme(legend.position="none")
                                } else {
                                        dtalist <- list()
                                        for (i in 1:length(levels(dta[,chancol]))){
                                                dtacplist <- list()
                                                for (j in 1 : length(levels(dta[,cpvarcol]))){
                                                        dtachan <- subset(dta,
                                                                          dta[,chancol] == levels(dta[,chancol])[i] & dta[,cpvarcol] == levels(dta[,cpvarcol])[j])
                                                        h <- cv.select(frames,dtachan[,datacol],
                                                                       degree = cv.degree, interval = cv.interval)
                                                        scbchan <- scb.mean(frames, dtachan[,datacol], 
                                                                            bandwidth = h, level = level,
                                                                            scbtype = scbtype)
                                                        dtacplist[[j]] <- data.frame(FUN = scbchan$nonpar)
                                                        if (scbtype == "bootstrap"){
                                                                dtacplist[[j]]$Q1 <- scbchan$bootscb[,1]
                                                                dtacplist[[j]]$Q2 <- scbchan$bootscb[,2]
                                                        }
                                                        if (scbtype == "normal"){
                                                                dtacplist[[j]]$Q1 <- scbchan$normscb[,1]
                                                                dtacplist[[j]]$Q2 <- scbchan$normscb[,2]
                                                        }
                                                        dtacplist[[j]]$Channel <- levels(dta[,chancol])[i]
                                                        dtacplist[[j]]$frames <- frames
                                                        dtacplist[[j]]$Condition <- levels(dta[,cpvarcol])[j]
                                                }
                                                dtalist[[i]] <- dtacplist[[1]]
                                                for (k in 2:length(dtacplist)){dtalist[[i]] <- rbind(dtalist[[i]],dtacplist[[k]])}
                                        }
                                        plotdata <- dtalist[[1]]
                                        for (i in 2:length(dtalist)){plotdata <- rbind(plotdata,dtalist[[i]])}
                                        data_plot <- merge(plotdata,
                                                           test_plot,
                                                           by =c("Channel","frames"))
                                        plot <- ggplot(data_plot,aes(x=frames,group=Condition))+
                                                geom_vline(aes(xintercept = sign_frames),
                                                           col=significant_col,
                                                           alpha=significant_alpha)+
                                                geom_ribbon(aes(x=frames, ymax=Q2, ymin=Q1,fill=Condition),
                                                            alpha=ci.alpha)+ # set alpha
                                                geom_line(aes(y = FUN,col=Condition))+
                                                labs(y="Signal")+# Need some changes ?
                                                facet_wrap(~Channel)+
                                                scale_color_manual(values = c("red","blue"),name = colnames(dta)[cpvarcol])+
                                                scale_fill_manual(values = c("red","blue"),name = colnames(dta)[cpvarcol])
                                }
                        }
                        if (ci.type == "No"){
                                listlen <- length(tests_rst)
                                test_list = list()
                                for (i in 1: listlen){
                                        test_list[[i]] <- data.frame(frames=frames)
                                        test_list[[i]]$significant <- 
                                                ifelse(test_list[[i]]$frames %in% test_list[[i]]$frames[tests_rst[[i]]$significant],"sig","non-sig")
                                        test_list[[i]]$sign_frames <- 
                                                ifelse(test_list[[i]]$frames %in% test_list[[i]]$frames[tests_rst[[i]]$significant],test_list[[i]]$frames,NA)
                                        test_list[[i]]$group <- rep(0,length(frames))
                                        test_list[[i]]$Channel <- names(tests_rst)[i]
                                }
                                test_plot <- test_list[[1]]
                                for (k in 2:listlen){
                                        test_plot <- rbind(test_plot,test_list[[k]])
                                }
                                if (is.null(cpvarcol)){
                                        data_fun <- data_summarize(dta,frames,
                                                                   datacol,subjcol,chancol,othvarcol,
                                                                   summarycol = c(chancol),fun=fun)
                                        data_fun_long <- melt(data_fun,id=c(colnames(dta)[chancol]))
                                        data_fun_long <- data_fun_long[order(data_fun_long[,1],
                                                                             data_fun_long[,2],
                                                                             data_fun_long[,3]),]
                                        colnames(data_fun_long)[3] <- "FUN"
                                        colnames(data_fun_long)[1] <- c("Channel")
                                        data_plot <- merge(data_fun_long,
                                                           test_plot,
                                                           by =c("Channel","frames"))
                                        plot <- ggplot(data_plot,aes(x=frames))+
                                                geom_vline(aes(xintercept = sign_frames),
                                                           col=significant_col,
                                                           alpha=significant_alpha)+
                                                geom_line(aes(y = FUN))+
                                                facet_wrap(~Channel)+
                                                labs(y="Signal")+
                                                theme(legend.position="none")
                                } else {
                                        dta[,cpvarcol] <- as.factor(dta[,cpvarcol])
                                        dta[,chancol] <- as.factor(dta[,chancol])
                                        data_fun <- data_summarize(dta,frames,
                                                                   datacol,subjcol,chancol,othvarcol,
                                                                   summarycol = c(chancol,cpvarcol),fun=fun)
                                        data_fun_long <- melt(data_fun,
                                                              id=c(colnames(dta)[chancol],
                                                                   colnames(dta)[cpvarcol]))
                                        data_fun_long <- data_fun_long[order(data_fun_long[,1],
                                                                             data_fun_long[,2],
                                                                             data_fun_long[,3]),]
                                        colnames(data_fun_long)[4] <- "FUN"
                                        data_fun_long$frames <- 
                                                c(rep(frames,(dim(data_fun_long)[1]/length(frames))))
                                        colnames(data_fun_long)[1:2] <- c("Channel","Condition")
                                        data_plot <- merge(data_fun_long,
                                                           test_plot,
                                                           by =c("Channel","frames"))
                                        plot <- ggplot(data_plot,aes(x=frames,group=Condition))+
                                                geom_vline(aes(xintercept = sign_frames),
                                                           col=significant_col,
                                                           alpha=significant_alpha)+
                                                geom_line(aes(y = FUN,col=Condition))+ 
                                                labs(y="Signal")+# Need some changes ?
                                                facet_wrap(~Channel)+
                                                theme(legend.position="none")
                                }
                        }
                }
        return(plot)
        }
}
head(dta[,1:8])
  Subject Channel Condition   value.1   value.2   value.3   value.4
1   subj1     Fp1   nonword -1.545226 -1.889412 -1.463414 -1.335739
2   subj1     Fp2   nonword -1.373787 -1.853133 -1.751572 -1.913380
3   subj1      F3   nonword -2.856959 -2.690639 -0.926768 -0.168384
4   subj1      F4   nonword -2.302168 -2.675416 -1.816674 -1.546154
5   subj1      C3   nonword -4.778307 -4.948525 -2.399150 -1.290970
6   subj1      C4   nonword -1.423518 -1.694514 -1.484223 -1.729665
     value.5
1 -1.0099440
2 -1.5702070
3  0.7674268
4 -0.8345606
5  0.5188065
6 -1.4330980