library(QCSimulator)
library(ggplot2)
q0=matrix(c(1,0),nrow=2,ncol=1)
q1 =matrix(c(0,1),nrow=2,ncol=1)
I=matrix(c(1,0,0,1),nrow=2,ncol=2)
H=1/sqrt(2) * matrix(c(1,1,1,-1),nrow=2,ncol=2)
S=matrix(c(1,0,0,1i),nrow=2,ncol=2)
S1=matrix(c(1,0,0,-1i),nrow=2,ncol=2)
T=matrix(c(1,0,0,exp(1i*pi/4)),nrow=2,ncol=2)
q00=matrix(c(1,0,0,0),nrow=4,ncol=1)
cnot= matrix(c(1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0),nrow=4,ncol=4)

1. Unitary’ness

The following functions create the dagger function for the gate (transpose of complex conjugate of unitary matrix) and also check for unitariness.

H
##           [,1]       [,2]
## [1,] 0.7071068  0.7071068
## [2,] 0.7071068 -0.7071068
HDagger = GateDagger(H)
HDagger
##           [,1]       [,2]
## [1,] 0.7071068  0.7071068
## [2,] 0.7071068 -0.7071068
HDagger %*% H
##      [,1] [,2]
## [1,]    1    0
## [2,]    0    1
T
##      [,1]                 [,2]
## [1,] 1+0i 0.0000000+0.0000000i
## [2,] 0+0i 0.7071068+0.7071068i
TDagger = GateDagger(T)
TDagger
##      [,1]                 [,2]
## [1,] 1+0i 0.0000000+0.0000000i
## [2,] 0+0i 0.7071068-0.7071068i
TDagger %*% T
##      [,1] [,2]
## [1,] 1+0i 0+0i
## [2,] 0+0i 1+0i

2. Angle between vectors - Inner Product

#1. a is the diagonal vector 1/2 |0> + 1/2 |1> and b = q0 = |0>
diagonal <-  matrix(c(1/sqrt(2),1/sqrt(2)),nrow=2,ncol=1)
q0=matrix(c(1,0),nrow=2,ncol=1)
innerProduct(diagonal,q0)
##      [,1]
## [1,]   45
#2. a = 1/2|0> + sqrt(3)/2|1> and  b= 1/sqrt(2) |0> + 1/sqrt(2) |1>
a = matrix(c(1/2,sqrt(3)/2),nrow=2,ncol=1)
b = matrix(c(1/sqrt(2),1/sqrt(2)),nrow=2,ncol=1)
innerProduct(a,b)
##      [,1]
## [1,]   15

3. Chaining Quantum Gates

The Quantum Gates can be chained by passing the using the invoked quantum gate as a argument to the function

# H x q0
Hadamard(q0)
##           [,1]
## [1,] 0.7071068
## [2,] 0.7071068
# S x H x q0
SGate(Hadamard(q0))
##                      [,1]
## [1,] 0.7071068+0.0000000i
## [2,] 0.0000000+0.7071068i
# H x S x S x H x q0
Hadamard(SGate(SGate(Hadamard(q0))))
##      [,1]
## [1,] 0+0i
## [2,] 1+0i
# S x T x H x T x H x q0
SGate(TGate(Hadamard(TGate(Hadamard(q0)))))
##                      [,1]
## [1,] 0.8535534+0.3535534i
## [2,] 0.1464466+0.3535534i

4. Measurement

measurement(q0)
##   0 1
## v 1 0
measurement(Hadamard(q0))
##     0   1
## v 0.5 0.5
a <- SGate(TGate(Hadamard(TGate(Hadamard(q0)))))
measurement(a)
##           0         1
## v 0.8535534 0.1464466

5. Plot measurement

plotMeasurement(q1)

plotMeasurement(Hadamard(q0))

a = measurement(SGate(TGate(Hadamard(TGate(Hadamard(q0))))))
plotMeasurement(a)

6. Simulating Bell state ZW

# Compute the effect of the Composite H gate with the Identity matrix (I)
a=kronecker(H,I,"*")
a
##           [,1]      [,2]       [,3]       [,4]
## [1,] 0.7071068 0.0000000  0.7071068  0.0000000
## [2,] 0.0000000 0.7071068  0.0000000  0.7071068
## [3,] 0.7071068 0.0000000 -0.7071068  0.0000000
## [4,] 0.0000000 0.7071068  0.0000000 -0.7071068
# Compute the applcation of CNOT on this result
b = CNOT(a)
b
##           [,1]      [,2]       [,3]       [,4]
## [1,] 0.7071068 0.0000000  0.7071068  0.0000000
## [2,] 0.0000000 0.7071068  0.0000000  0.7071068
## [3,] 0.0000000 0.7071068  0.0000000 -0.7071068
## [4,] 0.7071068 0.0000000 -0.7071068  0.0000000
# Obtain the result of CNOT on q00
c = b %*% q00
c
##           [,1]
## [1,] 0.7071068
## [2,] 0.0000000
## [3,] 0.0000000
## [4,] 0.7071068
# Compute the effect of the composite HxTxHxS gates and the Identity matrix(I) for measurement
d=Hadamard(TGate(Hadamard(SGate(I))))
e=kronecker(I, d,"*")

# Applying  the composite gate on the output 'c'
f = e %*% c
# Measure the output
g <- measurement(f)
g
##          00        01        10        11
## v 0.4267767 0.0732233 0.0732233 0.4267767
#Plot the measurement
plotMeasurement(g)