Predicting with trees

data("iris")
library(ggplot2); library(caret)
## Loading required package: lattice
names(iris)
## [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width" 
## [5] "Species"
inTrain <- createDataPartition(y = iris$Species, p = 0.7, list = FALSE)
training = iris[inTrain,]
testing = iris[-inTrain,]
qplot(Petal.Width, Sepal.Width, color = Species, data = training)

modelFit <- train(Species~., method = 'rpart', data = training)
## Loading required package: rpart
print(modelFit$finalModel)
## n= 105 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
## 1) root 105 70 setosa (0.33333333 0.33333333 0.33333333)  
##   2) Petal.Length< 2.45 35  0 setosa (1.00000000 0.00000000 0.00000000) *
##   3) Petal.Length>=2.45 70 35 versicolor (0.00000000 0.50000000 0.50000000)  
##     6) Petal.Length< 4.95 37  3 versicolor (0.00000000 0.91891892 0.08108108) *
##     7) Petal.Length>=4.95 33  1 virginica (0.00000000 0.03030303 0.96969697) *
plot(modelFit$finalModel, uniform = TRUE, main = "classification Tree")
text(modelFit$finalModel, use.n = TRUE, all = TRUE, cex = .8)

You can also embed plots, for example:

##   [1] setosa     setosa     setosa     setosa     setosa     setosa    
##   [7] setosa     setosa     setosa     setosa     setosa     setosa    
##  [13] setosa     setosa     setosa     setosa     setosa     setosa    
##  [19] setosa     setosa     setosa     setosa     setosa     setosa    
##  [25] setosa     setosa     setosa     setosa     setosa     setosa    
##  [31] setosa     setosa     setosa     setosa     setosa     versicolor
##  [37] versicolor versicolor versicolor versicolor versicolor versicolor
##  [43] versicolor versicolor versicolor versicolor versicolor versicolor
##  [49] versicolor versicolor versicolor versicolor versicolor versicolor
##  [55] versicolor virginica  versicolor versicolor versicolor versicolor
##  [61] versicolor versicolor versicolor versicolor versicolor versicolor
##  [67] versicolor versicolor versicolor versicolor virginica  virginica 
##  [73] virginica  virginica  virginica  versicolor virginica  virginica 
##  [79] virginica  virginica  virginica  virginica  virginica  virginica 
##  [85] virginica  virginica  versicolor virginica  virginica  versicolor
##  [91] virginica  virginica  virginica  virginica  virginica  virginica 
##  [97] virginica  virginica  virginica  virginica  virginica  virginica 
## [103] virginica  virginica  virginica 
## Levels: setosa versicolor virginica

Bootstrapping and aggregating

Basic idea

1. Resampling and recalculating
2. Average or majority vote
library(ElemStatLearn)
data("ozone", package = "ElemStatLearn")
##bagged loess
ll <- matrix(NA, nrow = 10, ncol = 155) 
for (i in 1:10){
    ss <- sample(1:dim(ozone)[1], replace = T) 
    ozone0 <- ozone[ss,]; ozone0 <- ozone0[order(ozone$ozone),]
    loess0 <- loess(temperature ~ ozone, data = ozone0, span = 0.2)
    ll[i, ] <- predict(loess0, newdata = data.frame(ozone = 1:155))
}
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : pseudoinverse used at 14
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : neighborhood radius 2
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : reciprocal condition number 1.1772e-16
###
plot(ozone$ozone, ozone$temperature, pch = 19, cex = 0.5)
for (i in 1:10) {
    lines(1:155, ll[i,], col = "grey", lwd = 2)
}

In train function, consider methods: * treebag * bagEarth * bagFDA

Alternatively you can build your own bag function (read the documentation carefully).

Random forests

Basic idea

1. Bootstrap samples
2. At each split, bootstrap variables
3. Grow multiple trees and vote

Pros and cons

* Pros: Accuracy
* Cons: speed, overfitting
data("iris")
library(ggplot2); library(caret)
names(iris)
## [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width" 
## [5] "Species"
inTrain <- createDataPartition(y = iris$Species, p = 0.7, list = FALSE)
training = iris[inTrain,]
testing = iris[-inTrain,]
modelFit <- train(Species~., data = training, method = "rf", prox = TRUE)
## Loading required package: randomForest
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
## 
##     margin
modelFit
## Random Forest 
## 
## 105 samples
##   4 predictor
##   3 classes: 'setosa', 'versicolor', 'virginica' 
## 
## No pre-processing
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 105, 105, 105, 105, 105, 105, ... 
## Resampling results across tuning parameters:
## 
##   mtry  Accuracy   Kappa    
##   2     0.9460830  0.9177018
##   3     0.9431002  0.9131657
##   4     0.9430717  0.9131141
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final value used for the model was mtry = 2.
##class centers
irisP <- classCenter(training[, c(3, 4)], training$Species, modelFit$finalModel$proximity)
irisP <- as.data.frame(irisP)
irisP$Species <- rownames(irisP)
p <- qplot(Petal.Width, Petal.Length, col = Species, data = training)
p <- p + geom_point(aes(x = Petal.Width, y = Petal.Length, col = Species), size = 5, shape = 4, data = irisP)
p

## if you want to check if your pred is ok
pred <- predict(modelFit, testing)
testing$predRight <- pred == testing$Species
table(pred, testing$Species)
##             
## pred         setosa versicolor virginica
##   setosa         15          0         0
##   versicolor      0         15         2
##   virginica       0          0        13

Check out the rfcv function.

Boosting

Basic idea

1. Take lots of weak predictors
2. Weigh them and add them up
3. Get a stronger predictor

Algorithm Adaboosting

###wage example
library(ISLR)
data('Wage')

Wage <- subset(Wage, select = -c(logwage))
inTrain <- createDataPartition(y = Wage$wage, p = .7, list = FALSE)
training <- Wage[inTrain,]
testing <- Wage[-inTrain,]
modelFit <- train(wage~., data = training, method = "gbm", verbose = FALSE )
## Loading required package: gbm
## Loading required package: survival
## 
## Attaching package: 'survival'
## The following object is masked from 'package:caret':
## 
##     cluster
## Loading required package: splines
## Loading required package: parallel
## Loaded gbm 2.1.1
## Loading required package: plyr
## 
## Attaching package: 'plyr'
## The following object is masked _by_ '.GlobalEnv':
## 
##     ozone
## The following object is masked from 'package:ElemStatLearn':
## 
##     ozone
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2009, 2004, 2004, 2003,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2009, 2006,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2006,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2006, 2004, 2005,
## 2005, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2005, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2005, 2005, 2008, 2008,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2005, 2004,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2003, 2003, 2003, 2008,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2006, 2004, 2004, 2005,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2005, 2008, 2009, 2006, 2006,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2005, 2008, 2009, 2009,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2003, 2005,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2005,
## 2008, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2009, 2004,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2005, 2009, 2006, 2004, 2004,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2005, 2005, 2006, 2004, 2004, 2003,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2003, 2008, 2008,
## 2009, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2003,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2005, 2008, 2006,
## 2004, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2004, 2003, 2003,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2004, 2004, 2003, 2003, 2005,
## 2006, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2003, 2005, 2008,
## 2009, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2003, 2003, 2005, 2005, 2008,
## 2008, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2003, 2009, 2004, 2005, 2003, 2003,
## 2003, : variable 22: region9. Pacific has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 3: sex2. Female has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 15: region2. Middle Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 16: region3. East North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 17: region4. West North Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 18: region5. South Atlantic has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 19: region6. East South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 20: region7. West South Central has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 21: region8. Mountain has no variation.
## Warning in gbm.fit(x = structure(c(2004, 2003, 2003, 2005, 2008, 2009,
## 2006, : variable 22: region9. Pacific has no variation.
print(modelFit)
## Stochastic Gradient Boosting 
## 
## 2102 samples
##   10 predictor
## 
## No pre-processing
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 2102, 2102, 2102, 2102, 2102, 2102, ... 
## Resampling results across tuning parameters:
## 
##   interaction.depth  n.trees  RMSE      Rsquared 
##   1                   50      35.13959  0.3047335
##   1                  100      34.63966  0.3144091
##   1                  150      34.59596  0.3154058
##   2                   50      34.63006  0.3159510
##   2                  100      34.47592  0.3208881
##   2                  150      34.54790  0.3188627
##   3                   50      34.50434  0.3197063
##   3                  100      34.59646  0.3174152
##   3                  150      34.80578  0.3111270
## 
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
## 
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## RMSE was used to select the optimal model using  the smallest value.
## The final values used for the model were n.trees = 100,
##  interaction.depth = 2, shrinkage = 0.1 and n.minobsinnode = 10.
qplot(predict(modelFit, testing), wage, data = testing)

Model based prediction

Basic idea

1. Assume data follows a probabillistic model
2. Use Baye's theroem to identify optical classifiers

Pros and cons

* Pros: computationally convenient
* Cons: make additional assumptions about the data

Naive Bayes and Linear Discriminant Analysis

### Example : iris data set
data("iris")
names(iris)
## [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width" 
## [5] "Species"
inTrain <- createDataPartition(y = iris$Species, p = 0.7, list = FALSE)
training = iris[inTrain,]
testing = iris[-inTrain,]
modlda <- train(Species~., data = training, method = "lda")
## Loading required package: MASS
modnb <- train(Species~., data = training, method = "nb")
## Loading required package: klaR
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 6,8,11,13,16,17,19,20,21,24,28,31,35,37,38,39,41,44,45,48,51,58,61,63,66,69,71,74,79,80,81,84,88,90,92,93,96,99,101,103
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 6,8,11,13,16,17,19,20,21,24,28,31,35,37,38,39,41,44,45,48,51,58,61,63,66,69,71,74,79,80,81,84,88,90,92,93,96,99,101,103
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,5,7,14,15,20,24,25,30,32,33,37,40,42,44,47,54,56,58,61,67,70,74,80,82,86,88,90,96,98,100,101,103,105
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,5,7,14,15,20,24,25,30,32,33,37,40,42,44,47,54,56,58,61,67,70,74,80,82,86,88,90,96,98,100,101,103,105
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 6,7,9,10,11,14,18,25,37,40,41,44,45,46,50,51,63,65,66,67,69,71,73,76,77,78,79,82,83,85,86,89,90,93,97,99,101,103,104
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 6,7,9,10,11,14,18,25,37,40,41,44,45,46,50,51,63,65,66,67,69,71,73,76,77,78,79,82,83,85,86,89,90,93,97,99,101,103,104
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 6,9,10,13,15,20,27,29,30,32,34,35,37,39,41,42,43,46,49,51,54,55,56,58,60,62,68,69,71,72,75,77,80,82,84,85,87,89,93,94,96,105
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 6,9,10,13,15,20,27,29,30,32,34,35,37,39,41,42,43,46,49,51,54,55,56,58,60,62,68,69,71,72,75,77,80,82,84,85,87,89,93,94,96,105
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,4,9,11,15,23,26,28,33,35,37,41,44,46,48,50,53,56,57,60,64,65,67,69,72,73,80,83,85,86,91,94,96,98,99,102,103,105
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,4,9,11,15,23,26,28,33,35,37,41,44,46,48,50,53,56,57,60,64,65,67,69,72,73,80,83,85,86,91,94,96,98,99,102,103,105
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 6,7,8,9,10,12,17,20,22,24,27,31,34,37,39,41,48,49,52,58,65,66,68,70,71,73,74,78,81,83,86,87,88,91,101,102,104
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 6,7,8,9,10,12,17,20,22,24,27,31,34,37,39,41,48,49,52,58,65,66,68,70,71,73,74,78,81,83,86,87,88,91,101,102,104
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,7,8,11,14,16,21,24,27,28,30,35,38,39,43,47,48,50,52,54,64,66,71,73,75,77,78,80,81,83,85,87,88,93,94,95,97,100,105
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,7,8,11,14,16,21,24,27,28,30,35,38,39,43,47,48,50,52,54,64,66,71,73,75,77,78,80,81,83,85,87,88,93,94,95,97,100,105
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,6,7,8,10,13,14,18,19,21,22,28,29,34,43,44,46,47,54,55,62,64,66,71,75,78,83,84,88,91,94,95,97,98,101,102
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,6,7,8,10,13,14,18,19,21,22,28,29,34,43,44,46,47,54,55,62,64,66,71,75,78,83,84,88,91,94,95,97,98,101,102
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,9,10,13,14,17,18,19,21,22,24,25,29,35,39,41,47,48,49,50,53,54,55,60,62,64,66,69,70,73,74,77,78,83,95,97,101,103
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,9,10,13,14,17,18,19,21,22,24,25,29,35,39,41,47,48,49,50,53,54,55,60,62,64,66,69,70,73,74,77,78,83,95,97,101,103
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,7,8,12,14,19,20,22,24,25,26,35,37,43,44,45,46,48,49,56,58,68,70,75,78,83,85,89,91,93,95,97,99,103,105
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,7,8,12,14,19,20,22,24,25,26,35,37,43,44,45,46,48,49,56,58,68,70,75,78,83,85,89,91,93,95,97,99,103,105
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,10,15,16,20,22,25,27,30,33,37,40,41,45,48,50,51,55,56,58,60,62,66,74,76,77,79,92,94,97,100,102,103,105
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,10,15,16,20,22,25,27,30,33,37,40,41,45,48,50,51,55,56,58,60,62,66,74,76,77,79,92,94,97,100,102,103,105
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,4,5,12,13,15,18,21,24,25,26,32,33,35,36,37,40,43,46,48,59,61,64,66,68,71,75,76,77,79,83,84,85,88,89,93,95,100,103,105
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,4,5,12,13,15,18,21,24,25,26,32,33,35,36,37,40,43,46,48,59,61,64,66,68,71,75,76,77,79,83,84,85,88,89,93,95,100,103,105
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,5,6,7,9,14,15,20,21,23,24,27,28,35,36,41,42,43,46,49,50,52,56,58,62,68,71,72,74,83,85,88,89,92,95,97,99,100,102,103
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,5,6,7,9,14,15,20,21,23,24,27,28,35,36,41,42,43,46,49,50,52,56,58,62,68,71,72,74,83,85,88,89,92,95,97,99,100,102,103
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,5,6,7,9,16,24,26,30,38,39,41,43,47,48,50,52,54,57,59,60,66,68,69,73,75,76,77,79,81,85,88,92,95,96,98,101,102,104
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,5,6,7,9,16,24,26,30,38,39,41,43,47,48,50,52,54,57,59,60,66,68,69,73,75,76,77,79,81,85,88,92,95,96,98,101,102,104
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,10,13,15,17,18,20,24,28,34,36,37,41,42,45,46,50,53,59,63,64,67,70,73,74,76,77,78,81,83,85,87,91,92,95,103,104,105
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,10,13,15,17,18,20,24,28,34,36,37,41,42,45,46,50,53,59,63,64,67,70,73,74,76,77,78,81,83,85,87,91,92,95,103,104,105
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,6,7,8,11,15,17,20,23,25,27,28,32,39,42,43,45,47,48,54,56,58,59,64,70,72,74,77,78,81,82,85,90,94,95,98,100,101,104,105
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,6,7,8,11,15,17,20,23,25,27,28,32,39,42,43,45,47,48,54,56,58,59,64,70,72,74,77,78,81,82,85,90,94,95,98,100,101,104,105
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,7,9,10,12,15,17,19,21,23,24,25,29,34,35,37,38,39,42,44,48,49,52,64,65,69,70,76,78,82,85,89,92,104,105
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,7,9,10,12,15,17,19,21,23,24,25,29,34,35,37,38,39,42,44,48,49,52,64,65,69,70,76,78,82,85,89,92,104,105
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,8,9,10,12,13,15,16,18,20,21,23,28,29,36,43,44,52,53,54,68,70,74,75,76,79,81,82,84,89,90,92,97,99,104
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,8,9,10,12,13,15,16,18,20,21,23,28,29,36,43,44,52,53,54,68,70,74,75,76,79,81,82,84,89,90,92,97,99,104
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,7,8,14,17,20,22,23,26,30,32,36,37,39,40,45,47,49,50,52,53,56,65,66,68,69,71,75,77,78,81,84,89,91,92,94,96,100,101,102,105
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,7,8,14,17,20,22,23,26,30,32,36,37,39,40,45,47,49,50,52,53,56,65,66,68,69,71,75,77,78,81,84,89,91,92,94,96,100,101,102,105
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,5,6,7,8,10,18,20,24,25,29,30,32,33,36,37,41,42,46,47,50,53,55,57,60,61,62,64,68,69,72,73,76,78,80,83,94,98,103
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,5,6,7,8,10,18,20,24,25,29,30,32,33,36,37,41,42,46,47,50,53,55,57,60,61,62,64,68,69,72,73,76,78,80,83,94,98,103
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,6,12,13,17,22,24,25,32,34,35,36,42,45,46,49,51,54,59,60,63,65,66,68,69,70,74,82,83,91,95,102,104,105
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,6,12,13,17,22,24,25,32,34,35,36,42,45,46,49,51,54,59,60,63,65,66,68,69,70,74,82,83,91,95,102,104,105
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 6,10,11,18,19,21,22,24,26,30,31,32,34,51,53,54,57,58,59,62,64,68,71,72,73,75,78,81,85,87,89,92,95,99,101
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 6,10,11,18,19,21,22,24,26,30,31,32,34,51,53,54,57,58,59,62,64,68,71,72,73,75,78,81,85,87,89,92,95,99,101
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,6,7,9,11,15,16,19,21,25,28,34,38,43,45,47,48,50,51,53,56,57,62,67,73,75,78,79,80,81,85,87,90,92,93,95,99,104
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,6,7,9,11,15,16,19,21,25,28,34,38,43,45,47,48,50,51,53,56,57,62,67,73,75,78,79,80,81,85,87,90,92,93,95,99,104
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,5,7,18,19,21,24,27,32,36,38,41,43,46,47,52,56,64,67,69,72,75,78,81,85,86,93,95,99,101,102,105
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,5,7,18,19,21,24,27,32,36,38,41,43,46,47,52,56,64,67,69,72,75,78,81,85,86,93,95,99,101,102,105
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,5,9,12,22,25,26,27,29,30,33,35,38,40,41,43,45,46,51,58,61,62,67,69,72,80,86,87,89,92,93,95,96,97,99,101
## --> row.names NOT used

## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,5,9,12,22,25,26,27,29,30,33,35,38,40,41,43,45,46,51,58,61,62,67,69,72,80,86,87,89,92,93,95,96,97,99,101
## --> row.names NOT used
plda <- predict(modlda, testing)
pnb <- predict(modnb, testing)
table(plda, pnb)
##             pnb
## plda         setosa versicolor virginica
##   setosa         15          0         0
##   versicolor      0         13         1
##   virginica       0          0        16
###comparison
equalP <- (plda == pnb)
qplot(Petal.Width, Sepal.Width, data = testing, col = equalP)