## dat$trt
## group1 group2 group3 
##     17     44     67
##         Variable       trt=group1      trt=group2       trt=group3 P.Value
## 1            age 43.8 + 12.9 (17)  52.9 + 14 (44) 54.8 + 12.6 (67)   0.004
## 2          sex_M    3/17 (17.6 %)  12/43 (27.9 %)   19/67 (28.4 %)   0.658
## 3          sex_F   14/17 (82.4 %)  31/43 (72.1 %)   48/67 (71.6 %)      NA
## 4     race_White    6/16 (37.5 %)    25/41 (61 %)   45/67 (67.2 %)   0.091
## 5 race_Non-White   10/16 (62.5 %)    16/41 (39 %)   22/67 (32.8 %)      NA
## 6            bmi  28.1 + 7.1 (16) 32.5 + 6.8 (40)  33.2 + 7.6 (66)   0.057
## 7 diabetes_FALSE   13/17 (76.5 %)  26/43 (60.5 %)   38/67 (56.7 %)   0.330
## 8  diabetes_TRUE    4/17 (23.5 %)  17/43 (39.5 %)   29/67 (43.3 %)      NA

all time

Survival by STS (yes, no)

## Call: survfit(formula = Surv(time2death, death) ~ trt, data = dat)
## 
##             n events median 0.95LCL 0.95UCL
## trt=group1 17      6  2.256   1.864      NA
## trt=group2 44     27  0.723   0.356      NA
## trt=group3 67     49  0.742   0.490    2.19

## Call: survfit(formula = Surv(time2death, death) ~ trt, data = dat)
## 
##                 trt=group1 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     17       0    1.000  0.0000       1.0000            1
##   0.5     12       2    0.857  0.0935       0.6921            1
##   1.0      9       1    0.786  0.1097       0.5977            1
##   2.0      4       1    0.655  0.1505       0.4173            1
##   3.0      2       1    0.491  0.1812       0.2383            1
##   4.0      1       1    0.246  0.1958       0.0514            1
## 
##                 trt=group2 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     44       0    1.000  0.0000       1.0000        1.000
##   0.5     23      15    0.632  0.0759       0.4999        0.800
##   1.0     12       7    0.432  0.0821       0.2972        0.626
##   2.0      4       3    0.320  0.0826       0.1927        0.530
##   3.0      2       1    0.213  0.1029       0.0827        0.549
##   4.0      1       0    0.213  0.1029       0.0827        0.549
## 
##                 trt=group3 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     67       0    1.000  0.0000        1.000        1.000
##   0.5     35      27    0.578  0.0621        0.469        0.714
##   1.0     29       6    0.479  0.0633        0.370        0.621
##   2.0     21       6    0.379  0.0620        0.275        0.522
##   3.0     13       3    0.322  0.0607        0.223        0.466
##   4.0     10       2    0.269  0.0613        0.172        0.420
##   5.0      9       0    0.269  0.0613        0.172        0.420
## Call:
## coxph(formula = Surv(time2death, death) ~ trt, data = dat)
## 
##   n= 128, number of events= 82 
## 
##             coef exp(coef) se(coef)     z Pr(>|z|)  
## trtgroup2 0.9138    2.4937   0.4526 2.019   0.0435 *
## trtgroup3 0.7474    2.1116   0.4370 1.711   0.0872 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## trtgroup2     2.494     0.4010    1.0270     6.055
## trtgroup3     2.112     0.4736    0.8967     4.972
## 
## Concordance= 0.548  (se = 0.033 )
## Rsquare= 0.038   (max possible= 0.994 )
## Likelihood ratio test= 4.97  on 2 df,   p=0.08334
## Wald test            = 4.08  on 2 df,   p=0.1303
## Score (logrank) test = 4.29  on 2 df,   p=0.1169

Death or Hospitalization by STS (yes, no)

## Call: survfit(formula = Surv(time2death, death.or.hosp) ~ trt, data = dat)
## 
##             n events median 0.95LCL 0.95UCL
## trt=group1 17      7  2.256   1.292      NA
## trt=group2 44     32  0.723   0.356    1.16
## trt=group3 67     59  0.742   0.400    1.88

## Call: survfit(formula = Surv(time2death, death.or.hosp) ~ trt, data = dat)
## 
##                 trt=group1 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     17       0    1.000  0.0000        1.000        1.000
##   0.5     12       2    0.857  0.0935        0.692        1.000
##   1.0      9       1    0.786  0.1097        0.598        1.000
##   2.0      4       2    0.573  0.1523        0.340        0.965
##   3.0      2       1    0.430  0.1686        0.199        0.927
##   4.0      1       1    0.215  0.1737        0.044        1.000
## 
##                 trt=group2 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     44       0   1.0000  0.0000       1.0000        1.000
##   0.5     23      16   0.6061  0.0772       0.4722        0.778
##   1.0     12       8   0.3840  0.0801       0.2552        0.578
##   2.0      4       5   0.2032  0.0736       0.0999        0.413
##   3.0      2       1   0.1354  0.0739       0.0465        0.395
##   4.0      1       1   0.0677  0.0605       0.0118        0.390
## 
##                 trt=group3 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     67       0    1.000  0.0000       1.0000        1.000
##   0.5     35      28    0.565  0.0620       0.4559        0.701
##   1.0     29       6    0.468  0.0628       0.3602        0.609
##   2.0     21       7    0.355  0.0605       0.2538        0.495
##   3.0     13       8    0.220  0.0531       0.1367        0.353
##   4.0     10       3    0.169  0.0482       0.0965        0.295
##   5.0      9       1    0.152  0.0462       0.0837        0.276
## Call:
## coxph(formula = Surv(time2death, death.or.hosp) ~ trt, data = dat)
## 
##   n= 128, number of events= 98 
## 
##             coef exp(coef) se(coef)    z Pr(>|z|)  
## trtgroup2 0.9756    2.6529   0.4187 2.33   0.0198 *
## trtgroup3 0.7037    2.0213   0.4044 1.74   0.0818 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## trtgroup2     2.653     0.3770    1.1677     6.027
## trtgroup3     2.021     0.4947    0.9149     4.465
## 
## Concordance= 0.554  (se = 0.031 )
## Rsquare= 0.05   (max possible= 0.997 )
## Likelihood ratio test= 6.54  on 2 df,   p=0.03795
## Wald test            = 5.6  on 2 df,   p=0.06095
## Score (logrank) test = 5.88  on 2 df,   p=0.05294

Two year survival

Survival by STS (yes, no)

## Call: survfit(formula = Surv(fu2y, death2y) ~ trt, data = dat)
## 
##             n events median 0.95LCL 0.95UCL
## trt=group1 17      4     NA   1.864      NA
## trt=group2 44     25  0.723   0.356      NA
## trt=group3 67     39  0.742   0.490      NA

## Call: survfit(formula = Surv(fu2y, death2y) ~ trt, data = dat)
## 
##                 trt=group1 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     17       0    1.000  0.0000        1.000            1
##   0.5     12       2    0.857  0.0935        0.692            1
##   1.0      9       1    0.786  0.1097        0.598            1
##   2.0      4       1    0.655  0.1505        0.417            1
## 
##                 trt=group2 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     44       0    1.000  0.0000        1.000        1.000
##   0.5     23      15    0.632  0.0759        0.500        0.800
##   1.0     12       7    0.432  0.0821        0.297        0.626
##   2.0      4       3    0.320  0.0826        0.193        0.530
## 
##                 trt=group3 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     67       0    1.000  0.0000        1.000        1.000
##   0.5     35      27    0.578  0.0621        0.469        0.714
##   1.0     29       6    0.479  0.0633        0.370        0.621
##   2.0     21       6    0.379  0.0620        0.275        0.522
## Call:
## coxph(formula = Surv(fu2y, death2y) ~ trt, data = dat)
## 
##   n= 128, number of events= 68 
## 
##             coef exp(coef) se(coef)     z Pr(>|z|)  
## trtgroup2 1.2073    3.3445   0.5394 2.238   0.0252 *
## trtgroup3 1.1405    3.1282   0.5252 2.171   0.0299 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## trtgroup2     3.345     0.2990     1.162     9.627
## trtgroup3     3.128     0.3197     1.117     8.757
## 
## Concordance= 0.551  (se = 0.034 )
## Rsquare= 0.056   (max possible= 0.99 )
## Likelihood ratio test= 7.34  on 2 df,   p=0.02545
## Wald test            = 5.18  on 2 df,   p=0.07485
## Score (logrank) test = 5.79  on 2 df,   p=0.0552
## Call:
## coxph(formula = Surv(fu2y, death2y) ~ trt + age + bmi, data = dat)
## 
##   n= 122, number of events= 65 
##    (6 observations deleted due to missingness)
## 
##               coef exp(coef) se(coef)     z Pr(>|z|)  
## trtgroup2 0.930513  2.535810 0.555626 1.675   0.0940 .
## trtgroup3 0.820974  2.272712 0.537218 1.528   0.1265  
## age       0.016045  1.016174 0.009403 1.706   0.0879 .
## bmi       0.020325  1.020532 0.017640 1.152   0.2493  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## trtgroup2     2.536     0.3944    0.8534     7.535
## trtgroup3     2.273     0.4400    0.7930     6.514
## age           1.016     0.9841    0.9976     1.035
## bmi           1.021     0.9799    0.9859     1.056
## 
## Concordance= 0.617  (se = 0.038 )
## Rsquare= 0.081   (max possible= 0.99 )
## Likelihood ratio test= 10.33  on 4 df,   p=0.03527
## Wald test            = 8.54  on 4 df,   p=0.07382
## Score (logrank) test = 9.04  on 4 df,   p=0.06017
## Call:
## coxph(formula = Surv(fu2y, death2y) ~ trt + age + sex + race + 
##     bmi + diabetes, data = dat)
## 
##   n= 119, number of events= 63 
##    (9 observations deleted due to missingness)
## 
##                    coef exp(coef)  se(coef)      z Pr(>|z|)  
## trtgroup2      0.770390  2.160608  0.562090  1.371    0.171  
## trtgroup3      0.747919  2.112599  0.537651  1.391    0.164  
## age            0.007861  1.007892  0.010240  0.768    0.443  
## sexF          -0.104235  0.901013  0.289813 -0.360    0.719  
## raceNon-White -0.072478  0.930086  0.282257 -0.257    0.797  
## bmi            0.016041  1.016170  0.018858  0.851    0.395  
## diabetesTRUE   0.545965  1.726273  0.273604  1.995    0.046 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##               exp(coef) exp(-coef) lower .95 upper .95
## trtgroup2        2.1606     0.4628    0.7180     6.502
## trtgroup3        2.1126     0.4734    0.7365     6.060
## age              1.0079     0.9922    0.9879     1.028
## sexF             0.9010     1.1099    0.5106     1.590
## raceNon-White    0.9301     1.0752    0.5349     1.617
## bmi              1.0162     0.9841    0.9793     1.054
## diabetesTRUE     1.7263     0.5793    1.0098     2.951
## 
## Concordance= 0.625  (se = 0.039 )
## Rsquare= 0.105   (max possible= 0.989 )
## Likelihood ratio test= 13.25  on 7 df,   p=0.06632
## Wald test            = 12.07  on 7 df,   p=0.09817
## Score (logrank) test = 12.83  on 7 df,   p=0.07629

Death or Hospitalization by STS (yes, no)

## Call: survfit(formula = Surv(fu2y, death.or.hosp.2y) ~ trt, data = dat)
## 
##             n events median 0.95LCL 0.95UCL
## trt=group1 17      5     NA   1.292      NA
## trt=group2 44     29  0.723   0.356    1.16
## trt=group3 67     41  0.742   0.400    1.88

## Call: survfit(formula = Surv(fu2y, death.or.hosp.2y) ~ trt, data = dat)
## 
##                 trt=group1 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     17       0    1.000  0.0000        1.000        1.000
##   0.5     12       2    0.857  0.0935        0.692        1.000
##   1.0      9       1    0.786  0.1097        0.598        1.000
##   2.0      4       2    0.573  0.1523        0.340        0.965
## 
##                 trt=group2 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     44       0    1.000  0.0000       1.0000        1.000
##   0.5     23      16    0.606  0.0772       0.4722        0.778
##   1.0     12       8    0.384  0.0801       0.2552        0.578
##   2.0      4       5    0.203  0.0736       0.0999        0.413
## 
##                 trt=group3 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     67       0    1.000  0.0000        1.000        1.000
##   0.5     35      28    0.565  0.0620        0.456        0.701
##   1.0     29       6    0.468  0.0628        0.360        0.609
##   2.0     21       7    0.355  0.0605        0.254        0.495
## Call:
## coxph(formula = Surv(fu2y, death.or.hosp.2y) ~ trt, data = dat)
## 
##   n= 128, number of events= 75 
## 
##             coef exp(coef) se(coef)     z Pr(>|z|)  
## trtgroup2 1.1670    3.2122   0.4854 2.404   0.0162 *
## trtgroup3 0.9581    2.6068   0.4739 2.022   0.0432 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## trtgroup2     3.212     0.3113     1.241     8.317
## trtgroup3     2.607     0.3836     1.030     6.599
## 
## Concordance= 0.556  (se = 0.033 )
## Rsquare= 0.057   (max possible= 0.994 )
## Likelihood ratio test= 7.54  on 2 df,   p=0.02303
## Wald test            = 5.8  on 2 df,   p=0.05507
## Score (logrank) test = 6.31  on 2 df,   p=0.04273
## Call:
## coxph(formula = Surv(fu2y, death.or.hosp.2y) ~ trt + age + bmi, 
##     data = dat)
## 
##   n= 122, number of events= 71 
##    (6 observations deleted due to missingness)
## 
##               coef exp(coef) se(coef)     z Pr(>|z|)  
## trtgroup2 1.137517  3.119013 0.548388 2.074   0.0381 *
## trtgroup3 0.872514  2.392919 0.534685 1.632   0.1027  
## age       0.014320  1.014423 0.008971 1.596   0.1104  
## bmi       0.024040  1.024331 0.016755 1.435   0.1513  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## trtgroup2     3.119     0.3206    1.0647     9.137
## trtgroup3     2.393     0.4179    0.8391     6.824
## age           1.014     0.9858    0.9967     1.032
## bmi           1.024     0.9762    0.9912     1.059
## 
## Concordance= 0.62  (se = 0.037 )
## Rsquare= 0.101   (max possible= 0.993 )
## Likelihood ratio test= 13.03  on 4 df,   p=0.01115
## Wald test            = 10.65  on 4 df,   p=0.0308
## Score (logrank) test = 11.41  on 4 df,   p=0.02236
## Call:
## coxph(formula = Surv(fu2y, death.or.hosp.2y) ~ trt + age + sex + 
##     race + bmi + diabetes, data = dat)
## 
##   n= 119, number of events= 69 
##    (9 observations deleted due to missingness)
## 
##                    coef exp(coef)  se(coef)      z Pr(>|z|)  
## trtgroup2      0.982208  2.670345  0.554178  1.772   0.0763 .
## trtgroup3      0.808651  2.244877  0.535009  1.511   0.1307  
## age            0.005018  1.005031  0.009831  0.510   0.6097  
## sexF          -0.270107  0.763298  0.275601 -0.980   0.3271  
## raceNon-White -0.049916  0.951309  0.270191 -0.185   0.8534  
## bmi            0.021714  1.021951  0.018036  1.204   0.2286  
## diabetesTRUE   0.542631  1.720527  0.262434  2.068   0.0387 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##               exp(coef) exp(-coef) lower .95 upper .95
## trtgroup2        2.6703     0.3745    0.9013     7.912
## trtgroup3        2.2449     0.4455    0.7867     6.406
## age              1.0050     0.9950    0.9859     1.025
## sexF             0.7633     1.3101    0.4447     1.310
## raceNon-White    0.9513     1.0512    0.5602     1.616
## bmi              1.0220     0.9785    0.9865     1.059
## diabetesTRUE     1.7205     0.5812    1.0287     2.878
## 
## Concordance= 0.623  (se = 0.037 )
## Rsquare= 0.136   (max possible= 0.993 )
## Likelihood ratio test= 17.44  on 7 df,   p=0.01475
## Wald test            = 15.86  on 7 df,   p=0.0264
## Score (logrank) test = 16.95  on 7 df,   p=0.01771

Two year logistic regression

Survival by STS (yes, no)

## 
## Call:
## glm(formula = death2y ~ trt, family = "binomial", data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.321  -1.296   1.040   1.040   1.701  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.1787     0.5718  -2.061   0.0393 *
## trtgroup2     1.4531     0.6477   2.243   0.0249 *
## trtgroup3     1.5100     0.6231   2.423   0.0154 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 169.79  on 125  degrees of freedom
## AIC: 175.79
## 
## Number of Fisher Scoring iterations: 4
## 
## Call:
## glm(formula = death2y ~ trt + age + bmi, family = "binomial", 
##     data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6398  -1.2028   0.8159   1.0470   1.8310  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -2.55495    1.16531  -2.193   0.0283 *
## trtgroup2    1.12718    0.68637   1.642   0.1005  
## trtgroup3    1.10037    0.66073   1.665   0.0958 .
## age          0.02594    0.01495   1.735   0.0828 .
## bmi          0.01062    0.02612   0.407   0.6843  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 168.60  on 121  degrees of freedom
## Residual deviance: 159.22  on 117  degrees of freedom
##   (6 observations deleted due to missingness)
## AIC: 169.22
## 
## Number of Fisher Scoring iterations: 4
## 
## Call:
## glm(formula = death2y ~ trt + age + sex + race + bmi + diabetes, 
##     family = "binomial", data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.8106  -1.0645   0.6786   1.0001   1.8778  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   -1.376175   1.377177  -0.999   0.3177  
## trtgroup2      1.078129   0.704566   1.530   0.1260  
## trtgroup3      1.104863   0.676178   1.634   0.1023  
## age            0.008660   0.016789   0.516   0.6060  
## sexF          -0.607990   0.475704  -1.278   0.2012  
## raceNon-White  0.018982   0.425862   0.045   0.9644  
## bmi            0.005625   0.027256   0.206   0.8365  
## diabetesTRUE   0.900811   0.432934   2.081   0.0375 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 164.56  on 118  degrees of freedom
## Residual deviance: 150.41  on 111  degrees of freedom
##   (9 observations deleted due to missingness)
## AIC: 166.41
## 
## Number of Fisher Scoring iterations: 4

Death or Hospitalization by STS (yes, no)

## 
## Call:
## glm(formula = death.or.hosp.2y ~ trt, family = "binomial", data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4671  -1.3759   0.9131   0.9911   1.5645  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -0.8755     0.5323  -1.645   0.1000  
## trtgroup2     1.5347     0.6201   2.475   0.0133 *
## trtgroup3     1.3309     0.5884   2.262   0.0237 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 173.65  on 127  degrees of freedom
## Residual deviance: 166.56  on 125  degrees of freedom
## AIC: 172.56
## 
## Number of Fisher Scoring iterations: 4
## 
## Call:
## glm(formula = death.or.hosp.2y ~ trt + age + bmi, family = "binomial", 
##     data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.8036  -1.2486   0.7812   0.9694   1.8491  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -2.75715    1.19132  -2.314   0.0206 *
## trtgroup2    1.54399    0.69292   2.228   0.0259 *
## trtgroup3    1.20141    0.66160   1.816   0.0694 .
## age          0.02455    0.01534   1.600   0.1096  
## bmi          0.01982    0.02689   0.737   0.4610  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 165.83  on 121  degrees of freedom
## Residual deviance: 153.70  on 117  degrees of freedom
##   (6 observations deleted due to missingness)
## AIC: 163.7
## 
## Number of Fisher Scoring iterations: 4
## 
## Call:
## glm(formula = death.or.hosp.2y ~ trt + age + sex + race + bmi + 
##     diabetes, family = "binomial", data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1508  -1.0489   0.4629   0.8814   1.9785  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   -0.9095707  1.4449622  -0.629   0.5290  
## trtgroup2      1.6231725  0.7298096   2.224   0.0261 *
## trtgroup3      1.2808245  0.6946819   1.844   0.0652 .
## age           -0.0002247  0.0176506  -0.013   0.9898  
## sexF          -1.3021440  0.5411694  -2.406   0.0161 *
## raceNon-White  0.0199006  0.4449487   0.045   0.9643  
## bmi            0.0184373  0.0281639   0.655   0.5127  
## diabetesTRUE   1.1535334  0.4713908   2.447   0.0144 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 161.92  on 118  degrees of freedom
## Residual deviance: 138.74  on 111  degrees of freedom
##   (9 observations deleted due to missingness)
## AIC: 154.74
## 
## Number of Fisher Scoring iterations: 4