## dat$trt
## combo other 
##    61    67

all time

Survival by STS (yes, no)

## Call: survfit(formula = Surv(time2death, death) ~ trt, data = dat)
## 
##            n events median 0.95LCL 0.95UCL
## trt=combo 61     33  1.049   0.714    3.36
## trt=other 67     49  0.742   0.490    2.19

## Call: survfit(formula = Surv(time2death, death) ~ trt, data = dat)
## 
##                 trt=combo 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     61       0    1.000  0.0000       1.0000        1.000
##   0.5     35      17    0.698  0.0616       0.5874        0.830
##   1.0     21       8    0.533  0.0697       0.4127        0.689
##   2.0      8       4    0.409  0.0785       0.2804        0.595
##   3.0      4       2    0.280  0.0932       0.1460        0.538
##   4.0      2       1    0.210  0.0926       0.0886        0.498
## 
##                 trt=other 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     67       0    1.000  0.0000        1.000        1.000
##   0.5     35      27    0.578  0.0621        0.469        0.714
##   1.0     29       6    0.479  0.0633        0.370        0.621
##   2.0     21       6    0.379  0.0620        0.275        0.522
##   3.0     13       3    0.322  0.0607        0.223        0.466
##   4.0     10       2    0.269  0.0613        0.172        0.420
##   5.0      9       0    0.269  0.0613        0.172        0.420
## Call:
## coxph(formula = Surv(time2death, death) ~ trt, data = dat)
## 
##   n= 128, number of events= 82 
## 
##             coef exp(coef) se(coef)    z Pr(>|z|)
## trtother 0.07995   1.08323  0.23537 0.34    0.734
## 
##          exp(coef) exp(-coef) lower .95 upper .95
## trtother     1.083     0.9232    0.6829     1.718
## 
## Concordance= 0.541  (se = 0.031 )
## Rsquare= 0.001   (max possible= 0.994 )
## Likelihood ratio test= 0.12  on 1 df,   p=0.7337
## Wald test            = 0.12  on 1 df,   p=0.7341
## Score (logrank) test = 0.12  on 1 df,   p=0.734

Death or Hospitalization by STS (yes, no)

## Call: survfit(formula = Surv(time2death, death.or.hosp) ~ trt, data = dat)
## 
##            n events median 0.95LCL 0.95UCL
## trt=combo 61     39  0.969   0.567    1.86
## trt=other 67     59  0.742   0.400    1.88

## Call: survfit(formula = Surv(time2death, death.or.hosp) ~ trt, data = dat)
## 
##                 trt=combo 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     61       0    1.000  0.0000       1.0000        1.000
##   0.5     35      18    0.679  0.0629       0.5661        0.814
##   1.0     21       9    0.496  0.0699       0.3762        0.654
##   2.0      8       7    0.305  0.0721       0.1923        0.485
##   3.0      4       2    0.209  0.0754       0.1034        0.424
##   4.0      2       2    0.105  0.0645       0.0313        0.350
## 
##                 trt=other 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     67       0    1.000  0.0000       1.0000        1.000
##   0.5     35      28    0.565  0.0620       0.4559        0.701
##   1.0     29       6    0.468  0.0628       0.3602        0.609
##   2.0     21       7    0.355  0.0605       0.2538        0.495
##   3.0     13       8    0.220  0.0531       0.1367        0.353
##   4.0     10       3    0.169  0.0482       0.0965        0.295
##   5.0      9       1    0.152  0.0462       0.0837        0.276
## Call:
## coxph(formula = Surv(time2death, death.or.hosp) ~ trt, data = dat)
## 
##   n= 128, number of events= 98 
## 
##               coef exp(coef)  se(coef)      z Pr(>|z|)
## trtother -0.003812  0.996195  0.217413 -0.018    0.986
## 
##          exp(coef) exp(-coef) lower .95 upper .95
## trtother    0.9962      1.004    0.6506     1.525
## 
## Concordance= 0.468  (se = 0.029 )
## Rsquare= 0   (max possible= 0.997 )
## Likelihood ratio test= 0  on 1 df,   p=0.986
## Wald test            = 0  on 1 df,   p=0.986
## Score (logrank) test = 0  on 1 df,   p=0.986

Two year survival

Survival by STS (yes, no)

## Call: survfit(formula = Surv(fu2y, death2y) ~ trt, data = dat)
## 
##            n events median 0.95LCL 0.95UCL
## trt=combo 61     29  1.049   0.714      NA
## trt=other 67     39  0.742   0.490      NA

## Call: survfit(formula = Surv(fu2y, death2y) ~ trt, data = dat)
## 
##                 trt=combo 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     61       0    1.000  0.0000        1.000        1.000
##   0.5     35      17    0.698  0.0616        0.587        0.830
##   1.0     21       8    0.533  0.0697        0.413        0.689
##   2.0      8       4    0.409  0.0785        0.280        0.595
## 
##                 trt=other 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     67       0    1.000  0.0000        1.000        1.000
##   0.5     35      27    0.578  0.0621        0.469        0.714
##   1.0     29       6    0.479  0.0633        0.370        0.621
##   2.0     21       6    0.379  0.0620        0.275        0.522
## Call:
## coxph(formula = Surv(fu2y, death2y) ~ trt, data = dat)
## 
##   n= 128, number of events= 68 
## 
##            coef exp(coef) se(coef)     z Pr(>|z|)
## trtother 0.2177    1.2432   0.2466 0.883    0.377
## 
##          exp(coef) exp(-coef) lower .95 upper .95
## trtother     1.243     0.8044    0.7667     2.016
## 
## Concordance= 0.545  (se = 0.032 )
## Rsquare= 0.006   (max possible= 0.99 )
## Likelihood ratio test= 0.79  on 1 df,   p=0.3754
## Wald test            = 0.78  on 1 df,   p=0.3774
## Score (logrank) test = 0.78  on 1 df,   p=0.3765

Death or Hospitalization by STS (yes, no)

## Call: survfit(formula = Surv(fu2y, death.or.hosp.2y) ~ trt, data = dat)
## 
##            n events median 0.95LCL 0.95UCL
## trt=combo 61     34  0.969   0.567    1.86
## trt=other 67     41  0.742   0.400    1.88

## Call: survfit(formula = Surv(fu2y, death.or.hosp.2y) ~ trt, data = dat)
## 
##                 trt=combo 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     61       0    1.000  0.0000        1.000        1.000
##   0.5     35      18    0.679  0.0629        0.566        0.814
##   1.0     21       9    0.496  0.0699        0.376        0.654
##   2.0      8       7    0.305  0.0721        0.192        0.485
## 
##                 trt=other 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     67       0    1.000  0.0000        1.000        1.000
##   0.5     35      28    0.565  0.0620        0.456        0.701
##   1.0     29       6    0.468  0.0628        0.360        0.609
##   2.0     21       7    0.355  0.0605        0.254        0.495
## Call:
## coxph(formula = Surv(fu2y, death.or.hosp.2y) ~ trt, data = dat)
## 
##   n= 128, number of events= 75 
## 
##             coef exp(coef) se(coef)     z Pr(>|z|)
## trtother 0.07876   1.08195  0.23367 0.337    0.736
## 
##          exp(coef) exp(-coef) lower .95 upper .95
## trtother     1.082     0.9243    0.6844      1.71
## 
## Concordance= 0.535  (se = 0.031 )
## Rsquare= 0.001   (max possible= 0.994 )
## Likelihood ratio test= 0.11  on 1 df,   p=0.7358
## Wald test            = 0.11  on 1 df,   p=0.7361
## Score (logrank) test = 0.11  on 1 df,   p=0.736

One year survival

Survival by STS (yes, no)

## Call: survfit(formula = Surv(fu1y, death1y) ~ trt, data = dat)
## 
##            n events median 0.95LCL 0.95UCL
## trt=combo 61     25     NA   0.714      NA
## trt=other 67     33  0.742   0.490      NA

## Call: survfit(formula = Surv(fu1y, death1y) ~ trt, data = dat)
## 
##                 trt=combo 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     61       0    1.000  0.0000        1.000        1.000
##   0.5     35      17    0.698  0.0616        0.587        0.830
##   1.0     21       8    0.533  0.0697        0.413        0.689
## 
##                 trt=other 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     67       0    1.000  0.0000        1.000        1.000
##   0.5     35      27    0.578  0.0621        0.469        0.714
##   1.0     29       6    0.479  0.0633        0.370        0.621
## Call:
## coxph(formula = Surv(fu1y, death1y) ~ trt, data = dat)
## 
##   n= 128, number of events= 58 
## 
##            coef exp(coef) se(coef)     z Pr(>|z|)
## trtother 0.2803    1.3236   0.2654 1.056    0.291
## 
##          exp(coef) exp(-coef) lower .95 upper .95
## trtother     1.324     0.7555    0.7868     2.226
## 
## Concordance= 0.551  (se = 0.034 )
## Rsquare= 0.009   (max possible= 0.983 )
## Likelihood ratio test= 1.13  on 1 df,   p=0.2885
## Wald test            = 1.12  on 1 df,   p=0.2908
## Score (logrank) test = 1.12  on 1 df,   p=0.2892

Death or Hospitalization by STS (yes, no)

## Call: survfit(formula = Surv(fu1y, death.or.hosp.1y) ~ trt, data = dat)
## 
##            n events median 0.95LCL 0.95UCL
## trt=combo 61     27  0.969   0.567      NA
## trt=other 67     34  0.742   0.400      NA

## Call: survfit(formula = Surv(fu1y, death.or.hosp.1y) ~ trt, data = dat)
## 
##                 trt=combo 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     61       0    1.000  0.0000        1.000        1.000
##   0.5     35      18    0.679  0.0629        0.566        0.814
##   1.0     21       9    0.496  0.0699        0.376        0.654
## 
##                 trt=other 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     67       0    1.000  0.0000        1.000        1.000
##   0.5     35      28    0.565  0.0620        0.456        0.701
##   1.0     29       6    0.468  0.0628        0.360        0.609
## Call:
## coxph(formula = Surv(fu1y, death.or.hosp.1y) ~ trt, data = dat)
## 
##   n= 128, number of events= 61 
## 
##            coef exp(coef) se(coef)     z Pr(>|z|)
## trtother 0.2284    1.2566   0.2580 0.885    0.376
## 
##          exp(coef) exp(-coef) lower .95 upper .95
## trtother     1.257     0.7958    0.7579     2.084
## 
## Concordance= 0.547  (se = 0.033 )
## Rsquare= 0.006   (max possible= 0.986 )
## Likelihood ratio test= 0.79  on 1 df,   p=0.3743
## Wald test            = 0.78  on 1 df,   p=0.3759
## Score (logrank) test = 0.79  on 1 df,   p=0.3749