Esta es una lista que reune distintos sitios y páginas web con contenido útil relacionado con R y con Estadística en general. La mayoría de ellos se encuentran en inglés, por lo que sugerencias de sitios en español son bienvenidas (email).
Esta lista se actualizará constantemente.
Sitio | Enlace |
---|---|
El estadístico eRRante | https://sites.google.com/site/elestadisticoerrante/ |
Introducing R - Germán Rodríguez | http://data.princeton.edu/R/ |
R - Introduction | http://datascienceplus.com/category/introduction/ |
Sitio | Enlace |
---|---|
Coursera: Data Science | https://github.com/bcaffo/courses |
A Tutorial on Loops in R – Usage and Alternatives | http://blog.datacamp.com/tutorial-on-loops-in-r/ |
Building Shiny apps - an interactive tutorial | http://deanattali.com/blog/building-shiny-apps-tutorial/ |
Forecasting: principles and practice | https://www.otexts.org/fpp |
Sitio | Enlace |
---|---|
Plotting systems in R | http://dzchilds.github.io/aps-data-analysis-L1/ggplot2-intro.html |
Beautiful Graphics in R | https://canvas.uw.edu/courses/947334/assignments/syllabus |
Build a plot layer by layer (ggplot2, by Hadley Wickham) | http://rpubs.com/hadley/ggplot2-layers |
ggplot2 Help Topics | http://docs.ggplot2.org/0.9.2.1/index.html |
Visualization in R - Scripts | http://rvisualization.com/r-scripts/ |
How to Analyze Data: 6 Useful Ways To Use Color In Graphs | http://blog.plot.ly/post/125942000947/how-to-analyze-data-6-useful-ways-to-use-color-in |
Online Dashboards: Eight Helpful Tips You Should Hear From Visualization Experts | http://blog.plot.ly/post/123617968702/online-dashboards-eight-helpful-tips-you-should |
Sitio | Enlace |
---|---|
Foundation for Open Statistics - Resources | http://www.foastat.org/resources.html |
Understanding empirical Bayes estimation (using baseball statistics) | http://varianceexplained.org/r/empirical_bayes_baseball/ |
Penn State - STAT 414 / 415 Probability Theory and Mathematical Statistics | https://onlinecourses.science.psu.edu/stat414/node/287 |
7 most commonly asked questions on Correlation | http://www.analyticsvidhya.com/blog/2015/06/correlation-common-questions/ |
What is P Hacking the analytic results | http://www.edupristine.com/blog/p-hacking-the-analytic-results |
Sitio | Enlace |
---|---|
Kaggle datasets | https://www.kaggle.com/datasets |
Quandl: Finance and economic data | https://www.quandl.com/ |
Bases de datos (usadas para Machine Learning) | http://www.openml.org/search?type=data |
StatSci.org Data Sets | http://www.statsci.org/datasets.html |
GADM database of Global Administrative Areas | http://www.gadm.org/ |
Sitio | Enlace |
---|---|
Kaggle R Tutorial on Machine Learning | https://www.datacamp.com/courses/kaggle-tutorial-on-machine-learing-the-sinking-of-the-titanic |
A Visual Introduction to Machine Learning | http://www.r2d3.us/visual-intro-to-machine-learning-part-1/ |
In-depth introduction to machine learning in 15 hours of expert videos | http://www.dataschool.io/15-hours-of-expert-machine-learning-videos/ |
Top 10 data mining algorithms in plain R | http://rayli.net/blog/data/top-10-data-mining-algorithms-in-plain-r |
Sitio | Enlace |
---|---|
R Style guide (Hadley Wickham) | http://adv-r.had.co.nz/Style.html |
Google’s R Style Guide | http://google-styleguide.googlecode.com/svn/trunk/Rguide.xml |
Sitio | Enlace |
---|---|
60+ R resources to improve your data skills | http://www.computerworld.com/article/2497464/business-intelligence/business-intelligence-60-r-resources-to-improve-your-data-skills.html |
Great R packages for data import, wrangling & visualization | http://www.computerworld.com/article/2921176/business-intelligence/great-r-packages-for-data-import-wrangling-visualization.html |
Exploratory Data Analysis with R | http://dzchilds.github.io/aps-data-analysis-L1/index.html |
R Explorations - Explorations in Data, Statistics and R | https://rexplorations.wordpress.com/ |
Big data analytics with dplyr and SQLite | http://www.luckyrandom.com/blog/articles/00050-311-service/ |
Free programming books - R | https://github.com/vhf/free-programming-books/blob/master/free-programming-books.md#r |
Introductory R Markdown: dynamic documents and reproducible research for beginners | http://www.introductoryr.co.uk/Reproducibility/Markdown_guide.html |