Esta es una lista que reune distintos sitios y páginas web con contenido útil relacionado con R y con Estadística en general. La mayoría de ellos se encuentran en inglés, por lo que sugerencias de sitios en español son bienvenidas (email).

Esta lista se actualizará constantemente.

Introducción a R

Sitio Enlace
El estadístico eRRante https://sites.google.com/site/elestadisticoerrante/
Introducing R - Germán Rodríguez http://data.princeton.edu/R/
R - Introduction http://datascienceplus.com/category/introduction/

Cursos y tutoriales

Sitio Enlace
Coursera: Data Science https://github.com/bcaffo/courses
A Tutorial on Loops in R – Usage and Alternatives http://blog.datacamp.com/tutorial-on-loops-in-r/
Building Shiny apps - an interactive tutorial http://deanattali.com/blog/building-shiny-apps-tutorial/
Forecasting: principles and practice https://www.otexts.org/fpp

Gráficos en R

Sitio Enlace
Plotting systems in R http://dzchilds.github.io/aps-data-analysis-L1/ggplot2-intro.html
Beautiful Graphics in R https://canvas.uw.edu/courses/947334/assignments/syllabus
Build a plot layer by layer (ggplot2, by Hadley Wickham) http://rpubs.com/hadley/ggplot2-layers
ggplot2 Help Topics http://docs.ggplot2.org/0.9.2.1/index.html
Visualization in R - Scripts http://rvisualization.com/r-scripts/
How to Analyze Data: 6 Useful Ways To Use Color In Graphs http://blog.plot.ly/post/125942000947/how-to-analyze-data-6-useful-ways-to-use-color-in
Online Dashboards: Eight Helpful Tips You Should Hear From Visualization Experts http://blog.plot.ly/post/123617968702/online-dashboards-eight-helpful-tips-you-should

Estadística en general

Sitio Enlace
Foundation for Open Statistics - Resources http://www.foastat.org/resources.html
Understanding empirical Bayes estimation (using baseball statistics) http://varianceexplained.org/r/empirical_bayes_baseball/
Penn State - STAT 414 / 415 Probability Theory and Mathematical Statistics https://onlinecourses.science.psu.edu/stat414/node/287
7 most commonly asked questions on Correlation http://www.analyticsvidhya.com/blog/2015/06/correlation-common-questions/
What is P Hacking the analytic results http://www.edupristine.com/blog/p-hacking-the-analytic-results

Bases de datos

Sitio Enlace
Kaggle datasets https://www.kaggle.com/datasets
Quandl: Finance and economic data https://www.quandl.com/
Bases de datos (usadas para Machine Learning) http://www.openml.org/search?type=data
StatSci.org Data Sets http://www.statsci.org/datasets.html
GADM database of Global Administrative Areas http://www.gadm.org/

Machine learning

Sitio Enlace
Kaggle R Tutorial on Machine Learning https://www.datacamp.com/courses/kaggle-tutorial-on-machine-learing-the-sinking-of-the-titanic
A Visual Introduction to Machine Learning http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
In-depth introduction to machine learning in 15 hours of expert videos http://www.dataschool.io/15-hours-of-expert-machine-learning-videos/
Top 10 data mining algorithms in plain R http://rayli.net/blog/data/top-10-data-mining-algorithms-in-plain-r

Guías de estilo para R

Sitio Enlace
R Style guide (Hadley Wickham) http://adv-r.had.co.nz/Style.html
Google’s R Style Guide http://google-styleguide.googlecode.com/svn/trunk/Rguide.xml

Enlaces sin categoría

Sitio Enlace
60+ R resources to improve your data skills http://www.computerworld.com/article/2497464/business-intelligence/business-intelligence-60-r-resources-to-improve-your-data-skills.html
Great R packages for data import, wrangling & visualization http://www.computerworld.com/article/2921176/business-intelligence/great-r-packages-for-data-import-wrangling-visualization.html
Exploratory Data Analysis with R http://dzchilds.github.io/aps-data-analysis-L1/index.html
R Explorations - Explorations in Data, Statistics and R https://rexplorations.wordpress.com/
Big data analytics with dplyr and SQLite http://www.luckyrandom.com/blog/articles/00050-311-service/
Free programming books - R https://github.com/vhf/free-programming-books/blob/master/free-programming-books.md#r
Introductory R Markdown: dynamic documents and reproducible research for beginners http://www.introductoryr.co.uk/Reproducibility/Markdown_guide.html