One Year Survival

## 
## ###################################################### 
## ###################### age _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.589  -1.052  -0.813   1.193   1.700  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -2.13267    0.77679  -2.745  0.00604 **
## age          0.03673    0.01421   2.585  0.00974 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 169.13  on 126  degrees of freedom
## AIC: 173.13
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### age.cat _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2773  -0.9804  -0.9804   1.0807   1.3881  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -0.4829     0.2361  -2.045   0.0409 *
## age.cat> 55   0.7147     0.3657   1.954   0.0507 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 172.45  on 126  degrees of freedom
## AIC: 176.45
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### sex _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.279  -1.043  -1.043   1.318   1.318  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)   0.2364     0.3454   0.684    0.494
## sexF         -0.5618     0.4043  -1.390    0.165
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 175.11  on 126  degrees of freedom
## Residual deviance: 173.16  on 125  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 177.16
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### race _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.133  -1.133  -1.038   1.222   1.323  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)
## (Intercept)    -0.1054     0.2297  -0.459    0.647
## raceNon-White  -0.2311     0.3721  -0.621    0.535
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 170.74  on 123  degrees of freedom
## Residual deviance: 170.35  on 122  degrees of freedom
##   (4 observations deleted due to missingness)
## AIC: 174.35
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### ethnicity _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.1478  -1.1478  -0.4854   1.2074   2.0963  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   -2.079      1.061  -1.961   0.0499 *
## ethnicityNH    2.009      1.077   1.865   0.0621 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 169.53  on 122  degrees of freedom
## Residual deviance: 164.18  on 121  degrees of freedom
##   (5 observations deleted due to missingness)
## AIC: 168.18
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### bmi _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4071  -1.0712  -0.9491   1.2178   1.4510  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -1.37619    0.83541  -1.647   0.0995 .
## bmi          0.03637    0.02510   1.449   0.1473  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 167.95  on 121  degrees of freedom
## Residual deviance: 165.80  on 120  degrees of freedom
##   (6 observations deleted due to missingness)
## AIC: 169.8
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### bmi.cat _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.1897  -1.1897  -0.9005   1.1651   1.4823  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)
## (Intercept)     -0.6931     0.5000  -1.386    0.166
## bmi.cat(25,30]   0.2877     0.6075   0.474    0.636
## bmi.cat(30,80]   0.7221     0.5550   1.301    0.193
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 167.95  on 121  degrees of freedom
## Residual deviance: 165.67  on 119  degrees of freedom
##   (6 observations deleted due to missingness)
## AIC: 171.67
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### diabetes _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.3911  -0.9293  -0.9293   0.9778   1.4477  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   -0.6162     0.2388  -2.580  0.00988 **
## diabetesTRUE   1.1057     0.3767   2.935  0.00333 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 175.11  on 126  degrees of freedom
## Residual deviance: 166.17  on 125  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 170.17
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### CAD _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.231  -1.063  -1.063   1.296   1.296  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -0.2754     0.2071  -1.330    0.184
## CADTRUE       0.4006     0.4104   0.976    0.329
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 175.11  on 126  degrees of freedom
## Residual deviance: 174.15  on 125  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 178.15
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### cause.esrd _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4006  -1.0302  -0.8519   0.9695   1.5425  
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                   -0.3567     0.3485  -1.024   0.3060  
## cause.esrddiabetes             0.8675     0.4586   1.892   0.0585 .
## cause.esrdglomerulonephritis  -0.4700     0.5717  -0.822   0.4110  
## cause.esrdhypertension        -0.4055     0.5753  -0.705   0.4809  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 175.11  on 126  degrees of freedom
## Residual deviance: 165.37  on 123  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 173.37
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### pd.ini.dose _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.1173  -1.1173  -0.9695   1.2388   1.4006  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)
## (Intercept)     -0.1431     0.2188  -0.654    0.513
## pd.ini.dose3.5  -0.3677     0.4750  -0.774    0.439
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 148.38  on 107  degrees of freedom
## Residual deviance: 147.77  on 106  degrees of freedom
##   (20 observations deleted due to missingness)
## AIC: 151.77
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### pd_method2 _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.1586  -1.1586  -0.9751   1.1963   1.3942  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)
## (Intercept)    -0.04445    0.21087  -0.211    0.833
## pd_method2CCPD -0.45199    0.39922  -1.132    0.258
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 175.11  on 126  degrees of freedom
## Residual deviance: 173.80  on 125  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 177.8
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### pd.vintage _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.222  -1.117  -0.892   1.193   1.622  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  0.12173    0.28399   0.429    0.668
## pd.vintage  -0.12212    0.08864  -1.378    0.168
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 174.34  on 126  degrees of freedom
## AIC: 178.34
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### total.vintage _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2431  -1.1297  -0.8596   1.2051   1.6548  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    0.17409    0.27633   0.630   0.5287  
## total.vintage -0.10074    0.06015  -1.675   0.0939 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 173.32  on 126  degrees of freedom
## AIC: 177.32
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### hx.hemo _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.123  -1.123  -1.076   1.233   1.282  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -0.1292     0.2545  -0.508    0.612
## hx.hemoTRUE  -0.1144     0.3554  -0.322    0.747
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 176.22  on 126  degrees of freedom
## AIC: 180.22
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### switch.hemo _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.177  -1.042  -1.042   1.177   1.319  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)     -2.192e-17  2.722e-01   0.000    1.000
## switch.hemoTRUE -3.272e-01  3.600e-01  -0.909    0.363
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 175.49  on 126  degrees of freedom
## AIC: 179.49
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### sts.order _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2130  -1.1359  -0.6876   1.2195   1.7653  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    0.08338    0.28893   0.289   0.7729  
## sts.orderlow  -1.40514    0.63257  -2.221   0.0263 *
## sts.ordernone -0.18182    0.38628  -0.471   0.6379  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 170.43  on 125  degrees of freedom
## AIC: 176.43
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.sts _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.123  -1.123  -1.076   1.233   1.282  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept)   -0.1292     0.2545  -0.508    0.612
## drug.stsTRUE  -0.1144     0.3554  -0.322    0.747
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 176.22  on 126  degrees of freedom
## AIC: 180.22
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### drug.sensipar _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.103  -1.103  -1.089   1.254   1.268  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)       -0.17825    0.21166  -0.842    0.400
## drug.sensiparTRUE -0.03306    0.38890  -0.085    0.932
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 176.31  on 126  degrees of freedom
## AIC: 180.31
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### drug.warfrin _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.374  -1.056  -1.056   1.304   1.304  
## 
## Coefficients:
##                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)       -0.2930     0.1927  -1.520    0.128
## drug.warfrinTRUE   0.7450     0.5205   1.431    0.152
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 174.21  on 126  degrees of freedom
## AIC: 178.21
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.acearb _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.1193  -1.1193  -0.9005   1.2366   1.4823  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)      -0.1382     0.1861  -0.742    0.458
## drug.acearbTRUE  -0.5550     0.6400  -0.867    0.386
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 175.53  on 126  degrees of freedom
## AIC: 179.53
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.cabinder _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.113  -1.097  -1.097   1.260   1.260  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)       -0.19189    0.18736  -1.024    0.306
## drug.cabinderTRUE  0.03774    0.58705   0.064    0.949
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 176.31  on 126  degrees of freedom
## AIC: 180.31
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### drug.calcitriol _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.1608  -1.1608  -0.8576   1.1941   1.5353  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)  
## (Intercept)         -0.03922    0.19807  -0.198   0.8430  
## drug.calcitriolTRUE -0.77171    0.46881  -1.646   0.0997 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 173.46  on 126  degrees of freedom
## AIC: 177.46
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.doxere _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.108  -1.108  -1.046   1.248   1.315  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)      -0.1655     0.1922  -0.861    0.389
## drug.doxereTRUE  -0.1529     0.5028  -0.304    0.761
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 176.23  on 126  degrees of freedom
## AIC: 180.23
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### drug.enoxaparin _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.482  -1.090  -1.090   1.267   1.267  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)          -0.2088     0.1799  -1.161    0.246
## drug.enoxaparinTRUE   0.9019     1.2379   0.729    0.466
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 175.75  on 126  degrees of freedom
## AIC: 179.75
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.esa _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.354  -1.007  -1.007   1.358   1.358  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    0.4055     0.3450   1.175   0.2399  
## drug.esaTRUE  -0.8199     0.4049  -2.025   0.0429 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 172.13  on 126  degrees of freedom
## AIC: 176.13
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.heparin _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.119  -1.119  -1.023   1.237   1.340  
## 
## Coefficients:
##                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)       -0.1388     0.1995  -0.696    0.486
## drug.heparinTRUE  -0.2359     0.4396  -0.537    0.592
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 176.03  on 126  degrees of freedom
## AIC: 180.03
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.iron _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2537  -1.2537  -0.8549   1.1030   1.5387  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     0.1777     0.2259   0.787  0.43156   
## drug.ironTRUE  -0.9960     0.3836  -2.597  0.00941 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 169.26  on 126  degrees of freedom
## AIC: 173.26
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.loinsulin _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.101  -1.098  -1.098   1.258   1.258  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)        -0.18859    0.18572  -1.015    0.310
## drug.loinsulinTRUE  0.00627    0.63337   0.010    0.992
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 176.32  on 126  degrees of freedom
## AIC: 180.32
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### drug.miscinjections _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.100  -1.100  -1.093   1.257   1.264  
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)
## (Intercept)             -0.18572    0.19328  -0.961    0.337
## drug.miscinjectionsTRUE -0.01495    0.48926  -0.031    0.976
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 176.32  on 126  degrees of freedom
## AIC: 180.32
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### drug.ncabinder _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.136  -1.136  -1.032   1.219   1.330  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)        -0.09764    0.22113  -0.442    0.659
## drug.ncabinderTRUE -0.25376    0.37224  -0.682    0.495
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 175.85  on 126  degrees of freedom
## AIC: 179.85
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.nvitd _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.177  -1.091  -1.091   1.267   1.267  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)
## (Intercept)     -0.2076     0.1867  -1.112    0.266
## drug.nvitdTRUE   0.2076     0.6068   0.342    0.732
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 176.20  on 126  degrees of freedom
## AIC: 180.2
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### drug.pari _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.123  -1.123  -1.123   1.233   1.233  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)
## (Intercept)     -0.1292     0.1800  -0.718    0.473
## drug.pariTRUE  -16.4369  1199.7724  -0.014    0.989
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 171.38  on 126  degrees of freedom
## AIC: 175.38
## 
## Number of Fisher Scoring iterations: 15
## 
## 
## 
## ###################################################### 
## ###################### drug.statin _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.1261  -1.1261  -0.8576   1.2296   1.5353  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)      -0.1219     0.1868  -0.652    0.514
## drug.statinTRUE  -0.6890     0.6293  -1.095    0.274
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 175.05  on 126  degrees of freedom
## AIC: 179.05
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.steroid _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.177  -1.097  -1.097   1.260   1.260  
## 
## Coefficients:
##                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)       -0.1911     0.1790  -1.067    0.286
## drug.steroidTRUE   0.1911     1.4255   0.134    0.893
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 176.30  on 126  degrees of freedom
## AIC: 180.3
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### drug.activevitd _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2172  -1.2172  -0.8607   1.1381   1.5315  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)  
## (Intercept)          0.09309    0.21590   0.431   0.6663  
## drug.activevitdTRUE -0.89544    0.39752  -2.253   0.0243 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 171.01  on 126  degrees of freedom
## AIC: 175.01
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.shinsulin _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.482  -1.072  -1.072   1.287   1.287  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)         -0.2534     0.1848  -1.371    0.170
## drug.shinsulinTRUE   0.9466     0.7309   1.295    0.195
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 174.53  on 126  degrees of freedom
## AIC: 178.53
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.binder _1yr ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.177  -1.133  -1.028   1.222   1.335  
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)
## (Intercept)           -0.1054     0.2297  -0.459    0.647
## drug.binderboth       -0.1823     0.7976  -0.229    0.819
## drug.bindercabinder    0.1054     0.8482   0.124    0.901
## drug.binderncabinder  -0.2575     0.3984  -0.646    0.518
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.32  on 127  degrees of freedom
## Residual deviance: 175.83  on 124  degrees of freedom
## AIC: 183.83
## 
## Number of Fisher Scoring iterations: 4

Survival by STS (yes, no)

## Call: survfit(formula = Surv(fu1y, death1y) ~ drug.sts, data = dat)
## 
##                 n events median 0.95LCL 0.95UCL
## drug.sts=FALSE 62     29     NA   0.504      NA
## drug.sts=TRUE  66     29  0.969   0.553      NA

## Call: survfit(formula = Surv(fu1y, death1y) ~ drug.sts, data = dat)
## 
##                 drug.sts=FALSE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     62       0    1.000  0.0000        1.000        1.000
##   0.5     35      23    0.615  0.0632        0.503        0.752
##   1.0     29       6    0.510  0.0654        0.396        0.655
## 
##                 drug.sts=TRUE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     66       0    1.000  0.0000        1.000        1.000
##   0.5     35      21    0.651  0.0621        0.540        0.785
##   1.0     21       8    0.497  0.0675        0.381        0.648
## Call:
## coxph(formula = Surv(fu1y, death1y) ~ drug.sts, data = dat)
## 
##   n= 128, number of events= 58 
## 
##                 coef exp(coef) se(coef)      z Pr(>|z|)
## drug.stsTRUE -0.1176    0.8891   0.2631 -0.447    0.655
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## drug.stsTRUE    0.8891      1.125    0.5309     1.489
## 
## Concordance= 0.535  (se = 0.034 )
## Rsquare= 0.002   (max possible= 0.983 )
## Likelihood ratio test= 0.2  on 1 df,   p=0.6551
## Wald test            = 0.2  on 1 df,   p=0.655
## Score (logrank) test = 0.2  on 1 df,   p=0.6548

Survival by STS (high, low, none)

## Call: survfit(formula = Surv(fu1y, death1y) ~ sts.order, data = dat)
## 
##                 n events median 0.95LCL 0.95UCL
## sts.order=high 48     25  0.567    0.40      NA
## sts.order=low  19      4     NA      NA      NA
## sts.order=none 61     29     NA    0.49      NA

## Call: survfit(formula = Surv(fu1y, death1y) ~ sts.order, data = dat)
## 
##                 sts.order=high 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     48       0    1.000  0.0000        1.000        1.000
##   0.5     23      18    0.592  0.0747        0.462        0.758
##   1.0     12       7    0.404  0.0784        0.276        0.591
## 
##                 sts.order=low 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     19       0    1.000  0.0000        1.000        1.000
##   0.5     13       3    0.812  0.0976        0.642        1.000
##   1.0     10       1    0.750  0.1083        0.565        0.995
## 
##                 sts.order=none 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     61       0    1.000  0.0000        1.000        1.000
##   0.5     34      23    0.609  0.0639        0.495        0.748
##   1.0     28       6    0.501  0.0660        0.387        0.649
## Call:
## coxph(formula = Surv(fu1y, death1y) ~ sts.order, data = dat)
## 
##   n= 128, number of events= 58 
## 
##                  coef exp(coef) se(coef)      z Pr(>|z|)  
## sts.orderlow  -1.1733    0.3093   0.5390 -2.177   0.0295 *
## sts.ordernone -0.1051    0.9002   0.2737 -0.384   0.7009  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##               exp(coef) exp(-coef) lower .95 upper .95
## sts.orderlow     0.3093      3.233    0.1076    0.8897
## sts.ordernone    0.9002      1.111    0.5264    1.5393
## 
## Concordance= 0.557  (se = 0.036 )
## Rsquare= 0.05   (max possible= 0.983 )
## Likelihood ratio test= 6.56  on 2 df,   p=0.03766
## Wald test            = 4.79  on 2 df,   p=0.09129
## Score (logrank) test = 5.3  on 2 df,   p=0.07079

Survival by Sensipar (yes, no)

## Call: survfit(formula = Surv(fu1y, death1y) ~ drug.sensipar, data = dat)
## 
##                      n events median 0.95LCL 0.95UCL
## drug.sensipar=FALSE 90     41  0.969   0.553      NA
## drug.sensipar=TRUE  38     17     NA   0.518      NA

## Call: survfit(formula = Surv(fu1y, death1y) ~ drug.sensipar, data = dat)
## 
##                 drug.sensipar=FALSE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     90       0    1.000  0.0000        1.000        1.000
##   0.5     48      31    0.632  0.0530        0.536        0.745
##   1.0     34      10    0.497  0.0564        0.398        0.621
## 
##                 drug.sensipar=TRUE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     38       0    1.000  0.0000        1.000        1.000
##   0.5     22      13    0.643  0.0797        0.505        0.820
##   1.0     16       4    0.526  0.0839        0.385        0.719
## Call:
## coxph(formula = Surv(fu1y, death1y) ~ drug.sensipar, data = dat)
## 
##   n= 128, number of events= 58 
## 
##                      coef exp(coef) se(coef)      z Pr(>|z|)
## drug.sensiparTRUE -0.0724    0.9302   0.2885 -0.251    0.802
## 
##                   exp(coef) exp(-coef) lower .95 upper .95
## drug.sensiparTRUE    0.9302      1.075    0.5284     1.637
## 
## Concordance= 0.508  (se = 0.032 )
## Rsquare= 0   (max possible= 0.983 )
## Likelihood ratio test= 0.06  on 1 df,   p=0.8009
## Wald test            = 0.06  on 1 df,   p=0.8019
## Score (logrank) test = 0.06  on 1 df,   p=0.8018

Survival by Warfrin (yes, no)

## Call: survfit(formula = Surv(fu1y, death1y) ~ drug.warfrin, data = dat)
## 
##                      n events median 0.95LCL 0.95UCL
## drug.warfrin=FALSE 110     47     NA   0.567      NA
## drug.warfrin=TRUE   18     11  0.665   0.400      NA

## Call: survfit(formula = Surv(fu1y, death1y) ~ drug.warfrin, data = dat)
## 
##                 drug.warfrin=FALSE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0    110       0    1.000  0.0000        1.000        1.000
##   0.5     61      36    0.652  0.0472        0.566        0.751
##   1.0     44      11    0.533  0.0504        0.443        0.641
## 
##                 drug.warfrin=TRUE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     18       0    1.000   0.000        1.000        1.000
##   0.5      9       8    0.542   0.120        0.351        0.836
##   1.0      6       3    0.361   0.117        0.192        0.681
## Call:
## coxph(formula = Surv(fu1y, death1y) ~ drug.warfrin, data = dat)
## 
##   n= 128, number of events= 58 
## 
##                    coef exp(coef) se(coef)     z Pr(>|z|)
## drug.warfrinTRUE 0.3297    1.3906   0.3351 0.984    0.325
## 
##                  exp(coef) exp(-coef) lower .95 upper .95
## drug.warfrinTRUE     1.391     0.7191    0.7211     2.682
## 
## Concordance= 0.514  (se = 0.024 )
## Rsquare= 0.007   (max possible= 0.983 )
## Likelihood ratio test= 0.9  on 1 df,   p=0.3419
## Wald test            = 0.97  on 1 df,   p=0.3251
## Score (logrank) test = 0.98  on 1 df,   p=0.3229

Two Years Survival

## 
## ###################################################### 
## ###################### age _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.722  -1.137   0.761   1.118   1.537  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -1.74206    0.76358  -2.281   0.0225 *
## age          0.03559    0.01421   2.506   0.0122 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 170.19  on 126  degrees of freedom
## AIC: 174.19
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### age.cat _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4190  -1.1110   0.9537   1.2453   1.2453  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -0.1582     0.2301  -0.688    0.492  
## age.cat> 55   0.7103     0.3686   1.927    0.054 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 173.16  on 126  degrees of freedom
## AIC: 177.16
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### sex _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5023  -1.1501   0.8842   1.2049   1.2049  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   0.7376     0.3666   2.012   0.0442 *
## sexF         -0.8021     0.4212  -1.904   0.0569 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 175.42  on 126  degrees of freedom
## Residual deviance: 171.63  on 125  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 175.63
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### race _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.315  -1.315   1.046   1.046   1.249  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)
## (Intercept)     0.3185     0.2323   1.371    0.170
## raceNon-White  -0.4855     0.3713  -1.307    0.191
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 171.38  on 123  degrees of freedom
## Residual deviance: 169.66  on 122  degrees of freedom
##   (4 observations deleted due to missingness)
## AIC: 173.66
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### ethnicity _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.268  -1.268   1.089   1.089   1.482  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -0.6931     0.7071  -0.980    0.327
## ethnicityNH   0.9045     0.7318   1.236    0.216
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 169.86  on 122  degrees of freedom
## Residual deviance: 168.23  on 121  degrees of freedom
##   (5 observations deleted due to missingness)
## AIC: 172.23
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### bmi _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.443  -1.201   1.011   1.130   1.239  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.63510    0.82257  -0.772     0.44
## bmi          0.02374    0.02489   0.954     0.34
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 168.60  on 121  degrees of freedom
## Residual deviance: 167.68  on 120  degrees of freedom
##   (6 observations deleted due to missingness)
## AIC: 171.68
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### bmi.cat _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.317  -1.202   1.044   1.044   1.374  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)
## (Intercept)     -0.4520     0.4835  -0.935    0.350
## bmi.cat(25,30]   0.5091     0.5900   0.863    0.388
## bmi.cat(30,80]   0.7736     0.5415   1.429    0.153
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 168.60  on 121  degrees of freedom
## Residual deviance: 166.44  on 119  degrees of freedom
##   (6 observations deleted due to missingness)
## AIC: 172.44
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### diabetes _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5518  -1.0579   0.8446   1.3018   1.3018  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   -0.2877     0.2303  -1.249   0.2116   
## diabetesTRUE   1.1350     0.3851   2.948   0.0032 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 175.42  on 126  degrees of freedom
## Residual deviance: 166.25  on 125  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 170.25
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### CAD _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4614  -1.1685   0.9178   1.1864   1.1864  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.02105    0.20521  -0.103    0.918
## CADTRUE      0.66768    0.42502   1.571    0.116
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 175.42  on 126  degrees of freedom
## Residual deviance: 172.87  on 125  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 176.87
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### cause.esrd _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5698  -0.9964   0.8305   1.1774   1.4224  
## 
## Coefficients:
##                                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                  -1.372e-16  3.430e-01   0.000   1.0000  
## cause.esrddiabetes            8.873e-01  4.674e-01   1.898   0.0577 .
## cause.esrdglomerulonephritis -4.418e-01  5.479e-01  -0.806   0.4200  
## cause.esrdhypertension       -5.596e-01  5.604e-01  -0.999   0.3180  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 175.42  on 126  degrees of freedom
## Residual deviance: 164.71  on 123  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 172.71
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### pd.ini.dose _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.281  -1.281   1.078   1.078   1.323  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)
## (Intercept)      0.2392     0.2198   1.088    0.276
## pd.ini.dose3.5  -0.5757     0.4688  -1.228    0.219
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 149.39  on 107  degrees of freedom
## Residual deviance: 147.86  on 106  degrees of freedom
##   (20 observations deleted due to missingness)
## AIC: 151.86
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### pd_method2 _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.293  -1.293   1.066   1.066   1.247  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)
## (Intercept)      0.2683     0.2127   1.261    0.207
## pd_method2CCPD  -0.4308     0.3925  -1.097    0.272
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 175.42  on 126  degrees of freedom
## Residual deviance: 174.21  on 125  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 178.21
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### pd.vintage _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.371  -1.222   1.011   1.106   1.505  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  0.46258    0.28534   1.621    0.105
## pd.vintage  -0.13095    0.08675  -1.509    0.131
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 174.60  on 126  degrees of freedom
## AIC: 178.6
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### total.vintage _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.3977  -1.2164   0.9818   1.0780   1.5452  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    0.52704    0.27865   1.891   0.0586 .
## total.vintage -0.10961    0.05878  -1.865   0.0622 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 173.26  on 126  degrees of freedom
## AIC: 177.26
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### hx.hemo _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.318  -1.152   1.043   1.083   1.203  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)   0.3254     0.2574   1.264    0.206
## hx.hemoTRUE  -0.3860     0.3562  -1.084    0.278
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 175.77  on 126  degrees of freedom
## AIC: 179.77
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### switch.hemo _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.241  -1.224   1.115   1.132   1.132  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)      0.14842    0.27291   0.544    0.587
## switch.hemoTRUE -0.04021    0.35874  -0.112    0.911
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 176.93  on 126  degrees of freedom
## AIC: 180.93
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### sts.order _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.323  -1.306   1.038   1.054   1.634  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    0.33647    0.29277   1.149   0.2504  
## sts.orderlow  -1.36609    0.59761  -2.286   0.0223 *
## sts.ordernone -0.03922    0.39083  -0.100   0.9201  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 170.33  on 125  degrees of freedom
## AIC: 176.33
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.sts _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.289  -1.177   1.069   1.177   1.177  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept)    0.2595     0.2561   1.013    0.311
## drug.stsTRUE  -0.2595     0.3553  -0.730    0.465
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 176.41  on 126  degrees of freedom
## AIC: 180.41
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### drug.sensipar _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.268  -1.215   1.089   1.140   1.140  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)        0.08895    0.21103   0.421    0.673
## drug.sensiparTRUE  0.12236    0.38855   0.315    0.753
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 176.85  on 126  degrees of freedom
## AIC: 180.85
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### drug.warfrin _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.734  -1.162   0.709   1.193   1.193  
## 
## Coefficients:
##                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)      -0.03637    0.19072  -0.191   0.8488  
## drug.warfrinTRUE  1.28913    0.59817   2.155   0.0312 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 171.53  on 126  degrees of freedom
## AIC: 175.53
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.acearb _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.237  -1.237   1.119   1.119   1.177  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)       0.1382     0.1861   0.742    0.458
## drug.acearbTRUE  -0.1382     0.6066  -0.228    0.820
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 176.89  on 126  degrees of freedom
## AIC: 180.89
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### drug.cabinder _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.3824  -1.2146   0.9854   1.1407   1.1407  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)        0.08701    0.18668   0.466    0.641
## drug.cabinderTRUE  0.38299    0.59987   0.638    0.523
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 176.53  on 126  degrees of freedom
## AIC: 180.53
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.calcitriol _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.297  -1.297   1.063   1.063   1.382  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)  
## (Intercept)           0.2763     0.1999   1.382   0.1670  
## drug.calcitriolTRUE  -0.7463     0.4500  -1.658   0.0972 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 174.12  on 126  degrees of freedom
## AIC: 178.12
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.doxere _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.265  -1.265   1.093   1.093   1.315  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)       0.2025     0.1925   1.052    0.293
## drug.doxereTRUE  -0.5210     0.5030  -1.036    0.300
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 175.86  on 126  degrees of freedom
## AIC: 179.86
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### drug.enoxaparin _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.482  -1.225   1.130   1.130   1.130  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)           0.1121     0.1792   0.626    0.531
## drug.enoxaparinTRUE   0.5810     1.2378   0.469    0.639
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 176.71  on 126  degrees of freedom
## AIC: 180.71
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.esa _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4074  -1.1683   0.9636   1.1866   1.1866  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept)    0.5261     0.3498   1.504    0.133
## drug.esaTRUE  -0.5476     0.4067  -1.346    0.178
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 175.09  on 126  degrees of freedom
## AIC: 179.09
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.heparin _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.254  -1.254   1.103   1.103   1.209  
## 
## Coefficients:
##                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)        0.1787     0.1998   0.894    0.371
## drug.heparinTRUE  -0.2528     0.4339  -0.583    0.560
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 176.61  on 126  degrees of freedom
## AIC: 180.61
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### drug.iron _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.344  -1.130   1.019   1.019   1.302  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)     0.3844     0.2292   1.677   0.0935 .
## drug.ironTRUE  -0.6721     0.3686  -1.823   0.0682 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 173.58  on 126  degrees of freedom
## AIC: 177.58
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.loinsulin _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4224  -1.2139   0.9508   1.1413   1.1413  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)         0.08552    0.18507   0.462    0.644
## drug.loinsulinTRUE  0.47409    0.65353   0.725    0.468
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 176.40  on 126  degrees of freedom
## AIC: 180.4
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.miscinjections _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.257  -1.257   1.100   1.100   1.264  
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)
## (Intercept)               0.1857     0.1933   0.961    0.337
## drug.miscinjectionsTRUE  -0.3864     0.4893  -0.790    0.430
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 176.32  on 126  degrees of freedom
## AIC: 180.32
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### drug.ncabinder _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.252  -1.219   1.104   1.136   1.136  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)         0.09764    0.22113   0.442    0.659
## drug.ncabinderTRUE  0.07671    0.36948   0.208    0.836
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 176.90  on 126  degrees of freedom
## AIC: 180.9
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### drug.nvitd _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.323  -1.222   1.038   1.134   1.134  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)
## (Intercept)      0.1035     0.1859   0.557    0.578
## drug.nvitdTRUE   0.2329     0.6143   0.379    0.705
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 176.80  on 126  degrees of freedom
## AIC: 180.8
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## 
## ###################################################### 
## ###################### drug.pari _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.261  -1.261   1.096   1.096   1.096  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)
## (Intercept)      0.1942     0.1805   1.076    0.282
## drug.pariTRUE  -16.7602  1199.7724  -0.014    0.989
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 170.74  on 126  degrees of freedom
## AIC: 174.74
## 
## Number of Fisher Scoring iterations: 15
## 
## 
## 
## ###################################################### 
## ###################### drug.statin _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.260  -1.260   1.097   1.097   1.382  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)       0.1919     0.1874   1.024    0.306
## drug.statinTRUE  -0.6619     0.6001  -1.103    0.270
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 175.69  on 126  degrees of freedom
## AIC: 179.69
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.steroid _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.218  -1.218   1.137   1.137   1.137  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)      9.531e-02  1.784e-01   0.534    0.593
## drug.steroidTRUE 1.547e+01  1.029e+03   0.015    0.988
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 174.39  on 126  degrees of freedom
## AIC: 178.39
## 
## Number of Fisher Scoring iterations: 14
## 
## 
## 
## ###################################################### 
## ###################### drug.activevitd _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.3841  -1.3841   0.9839   0.9839   1.4350  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)   
## (Intercept)           0.4738     0.2217   2.137  0.03263 * 
## drug.activevitdTRUE  -1.0616     0.3910  -2.715  0.00663 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 169.27  on 126  degrees of freedom
## AIC: 173.27
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.shinsulin _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.734  -1.199   0.709   1.156   1.156  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)         0.05043    0.18340   0.275    0.783
## drug.shinsulinTRUE  1.20233    0.82249   1.462    0.144
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 174.43  on 126  degrees of freedom
## AIC: 178.43
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## 
## ###################################################### 
## ###################### drug.binder _2yrs ###################### 
## ###################################################### 
## 
## Call:
## glm(formula = formula, family = binomial, data = dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4823  -1.1999   0.9792   1.1551   1.1551  
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)
## (Intercept)           0.05264    0.22950   0.229    0.819
## drug.binderboth       0.23504    0.79750   0.295    0.768
## drug.bindercabinder   0.64050    0.89592   0.715    0.475
## drug.binderncabinder  0.10151    0.39477   0.257    0.797
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 176.95  on 127  degrees of freedom
## Residual deviance: 176.34  on 124  degrees of freedom
## AIC: 184.34
## 
## Number of Fisher Scoring iterations: 4

Survival by STS (yes, no)

## Call: survfit(formula = Surv(fu2y, death2y) ~ drug.sts, data = dat)
## 
##                 n events median 0.95LCL 0.95UCL
## drug.sts=FALSE 62     35  1.122   0.504      NA
## drug.sts=TRUE  66     33  0.969   0.553      NA

## Call: survfit(formula = Surv(fu2y, death2y) ~ drug.sts, data = dat)
## 
##                 drug.sts=FALSE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     62       0    1.000  0.0000        1.000        1.000
##   0.5     35      23    0.615  0.0632        0.503        0.752
##   1.0     29       6    0.510  0.0654        0.396        0.655
##   2.0     21       6    0.403  0.0647        0.294        0.552
## 
##                 drug.sts=TRUE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     66       0    1.000  0.0000        1.000        1.000
##   0.5     35      21    0.651  0.0621        0.540        0.785
##   1.0     21       8    0.497  0.0675        0.381        0.648
##   2.0      8       4    0.381  0.0745        0.260        0.559
## Call:
## coxph(formula = Surv(fu2y, death2y) ~ drug.sts, data = dat)
## 
##   n= 128, number of events= 68 
## 
##                  coef exp(coef) se(coef)      z Pr(>|z|)
## drug.stsTRUE -0.07701   0.92588  0.24490 -0.314    0.753
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## drug.stsTRUE    0.9259       1.08    0.5729     1.496
## 
## Concordance= 0.53  (se = 0.032 )
## Rsquare= 0.001   (max possible= 0.99 )
## Likelihood ratio test= 0.1  on 1 df,   p=0.7531
## Wald test            = 0.1  on 1 df,   p=0.7532
## Score (logrank) test = 0.1  on 1 df,   p=0.7531

Survival by STS (high, low, none)

## Call: survfit(formula = Surv(fu2y, death2y) ~ sts.order, data = dat)
## 
##                 n events median 0.95LCL 0.95UCL
## sts.order=high 48     28  0.567    0.40    1.16
## sts.order=low  19      5     NA    1.86      NA
## sts.order=none 61     35  1.122    0.49      NA

## Call: survfit(formula = Surv(fu2y, death2y) ~ sts.order, data = dat)
## 
##                 sts.order=high 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     48       0    1.000  0.0000        1.000        1.000
##   0.5     23      18    0.592  0.0747        0.462        0.758
##   1.0     12       7    0.404  0.0784        0.276        0.591
##   2.0      4       3    0.299  0.0782        0.179        0.499
## 
##                 sts.order=low 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     19       0    1.000  0.0000        1.000        1.000
##   0.5     13       3    0.812  0.0976        0.642        1.000
##   1.0     10       1    0.750  0.1083        0.565        0.995
##   2.0      5       1    0.643  0.1358        0.425        0.973
## 
##                 sts.order=none 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     61       0    1.000  0.0000        1.000        1.000
##   0.5     34      23    0.609  0.0639        0.495        0.748
##   1.0     28       6    0.501  0.0660        0.387        0.649
##   2.0     20       6    0.392  0.0650        0.283        0.543
## Call:
## coxph(formula = Surv(fu2y, death2y) ~ sts.order, data = dat)
## 
##   n= 128, number of events= 68 
## 
##                  coef exp(coef) se(coef)      z Pr(>|z|)  
## sts.orderlow  -1.1594    0.3137   0.4868 -2.382   0.0172 *
## sts.ordernone -0.1612    0.8511   0.2574 -0.626   0.5311  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##               exp(coef) exp(-coef) lower .95 upper .95
## sts.orderlow     0.3137      3.188    0.1208    0.8144
## sts.ordernone    0.8511      1.175    0.5140    1.4094
## 
## Concordance= 0.561  (se = 0.034 )
## Rsquare= 0.057   (max possible= 0.99 )
## Likelihood ratio test= 7.53  on 2 df,   p=0.02311
## Wald test            = 5.68  on 2 df,   p=0.05844
## Score (logrank) test = 6.22  on 2 df,   p=0.04462

Survival by Sensipar (yes, no)

## Call: survfit(formula = Surv(fu2y, death2y) ~ drug.sensipar, data = dat)
## 
##                      n events median 0.95LCL 0.95UCL
## drug.sensipar=FALSE 90     47  0.969   0.553      NA
## drug.sensipar=TRUE  38     21  1.013   0.518      NA

## Call: survfit(formula = Surv(fu2y, death2y) ~ drug.sensipar, data = dat)
## 
##                 drug.sensipar=FALSE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     90       0    1.000  0.0000        1.000        1.000
##   0.5     48      31    0.632  0.0530        0.536        0.745
##   1.0     34      10    0.497  0.0564        0.398        0.621
##   2.0     21       6    0.398  0.0582        0.299        0.530
## 
##                 drug.sensipar=TRUE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     38       0    1.000  0.0000        1.000        1.000
##   0.5     22      13    0.643  0.0797        0.505        0.820
##   1.0     16       4    0.526  0.0839        0.385        0.719
##   2.0      8       4    0.390  0.0857        0.253        0.600
## Call:
## coxph(formula = Surv(fu2y, death2y) ~ drug.sensipar, data = dat)
## 
##   n= 128, number of events= 68 
## 
##                      coef exp(coef) se(coef)     z Pr(>|z|)
## drug.sensiparTRUE 0.02263   1.02288  0.26265 0.086    0.931
## 
##                   exp(coef) exp(-coef) lower .95 upper .95
## drug.sensiparTRUE     1.023     0.9776    0.6113     1.712
## 
## Concordance= 0.498  (se = 0.03 )
## Rsquare= 0   (max possible= 0.99 )
## Likelihood ratio test= 0.01  on 1 df,   p=0.9315
## Wald test            = 0.01  on 1 df,   p=0.9314
## Score (logrank) test = 0.01  on 1 df,   p=0.9314

Survival by Warfrin (yes, no)

## Call: survfit(formula = Surv(fu2y, death2y) ~ drug.warfrin, data = dat)
## 
##                      n events median 0.95LCL 0.95UCL
## drug.warfrin=FALSE 110     54  1.177   0.567      NA
## drug.warfrin=TRUE   18     14  0.665   0.400      NA

## Call: survfit(formula = Surv(fu2y, death2y) ~ drug.warfrin, data = dat)
## 
##                 drug.warfrin=FALSE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0    110       0    1.000  0.0000        1.000        1.000
##   0.5     61      36    0.652  0.0472        0.566        0.751
##   1.0     44      11    0.533  0.0504        0.443        0.641
##   2.0     26       7    0.436  0.0532        0.343        0.554
## 
##                 drug.warfrin=TRUE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     18       0    1.000  0.0000        1.000        1.000
##   0.5      9       8    0.542  0.1201        0.351        0.836
##   1.0      6       3    0.361  0.1168        0.192        0.681
##   2.0      3       3    0.181  0.0941        0.065        0.501
## Call:
## coxph(formula = Surv(fu2y, death2y) ~ drug.warfrin, data = dat)
## 
##   n= 128, number of events= 68 
## 
##                    coef exp(coef) se(coef)     z Pr(>|z|)
## drug.warfrinTRUE 0.4874    1.6280   0.3005 1.622    0.105
## 
##                  exp(coef) exp(-coef) lower .95 upper .95
## drug.warfrinTRUE     1.628     0.6142    0.9034     2.934
## 
## Concordance= 0.522  (se = 0.023 )
## Rsquare= 0.018   (max possible= 0.99 )
## Likelihood ratio test= 2.38  on 1 df,   p=0.1226
## Wald test            = 2.63  on 1 df,   p=0.1049
## Score (logrank) test = 2.68  on 1 df,   p=0.1015