title: “ANN-” author: “leela” date: “June 1, 2016” output: html_document

#install.packages("neuralnet")
library("neuralnet")
## Warning: package 'neuralnet' was built under R version 3.2.5
## Loading required package: grid
## Loading required package: MASS
dim(infert)
## [1] 248   8
?infert
## starting httpd help server ...
##  done
#uses Resilian  propagation
nn=neuralnet(case~age+parity+induced+spontaneous,data=infert,hidden=2,err.fct = "ce",linear.output = FALSE) 
plot(nn)
nn$net.result
## [[1]]
##             [,1]
## 1   0.9999994796
## 2   0.6468901108
## 3   0.1360079275
## 4   0.1439510491
## 5   0.3252413541
## 6   0.4290431427
## 7   0.1427168948
## 8   0.1389927058
## 9   0.2931382097
## 10  0.1377186808
## 11  0.1559078956
## 12  0.4615821111
## 13  0.3040587530
## 14  0.1641065131
## 15  0.6900969156
## 16  0.2814344776
## 17  0.1579575723
## 18  0.4180609931
## 19  0.5790256456
## 20  0.9008557819
## 21  0.8473752783
## 22  0.4964319167
## 23  0.8520110025
## 24  0.7568495617
## 25  0.5482314480
## 26  0.9472100700
## 27  0.9405907319
## 28  0.5906747428
## 29  0.9873252753
## 30  0.1408065127
## 31  0.6273669965
## 32  0.1727420035
## 33  0.6468901108
## 34  0.9034188474
## 35  0.5385865265
## 36  0.9261493685
## 37  0.7568495617
## 38  0.9357534309
## 39  0.1360407121
## 40  0.4836110879
## 41  0.7563884578
## 42  0.1653926614
## 43  0.1975959852
## 44  0.8441384962
## 45  0.1519384372
## 46  0.4682768975
## 47  0.8520110025
## 48  0.1392561104
## 49  0.2645551234
## 50  0.7271545835
## 51  1.0000000000
## 52  0.2841352608
## 53  0.2064720486
## 54  0.4836110879
## 55  0.8677450277
## 56  0.9317004753
## 57  0.1536155447
## 58  0.8520110025
## 59  0.4836110879
## 60  0.8341235407
## 61  0.9261493685
## 62  0.3883738150
## 63  0.6960887718
## 64  0.8932387395
## 65  0.1497890704
## 66  0.6273669965
## 67  0.2931382097
## 68  0.9999606816
## 69  0.6955497199
## 70  0.2159723978
## 71  0.3256158338
## 72  0.3883738150
## 73  0.5912748179
## 74  0.1389795480
## 75  0.8144610423
## 76  0.5912748179
## 77  0.2176422243
## 78  0.2159723978
## 79  0.5912748179
## 80  0.6960887718
## 81  0.4964319167
## 82  0.5187708997
## 83  0.3360459679
## 84  0.1356824551
## 85  0.2057418306
## 86  0.1360079275
## 87  0.1386100567
## 88  0.1948694287
## 89  0.1684278966
## 90  0.1427168948
## 91  0.3990560253
## 92  0.2931382097
## 93  0.1922394935
## 94  0.1379833226
## 95  0.1726675112
## 96  0.1540132909
## 97  0.1457313943
## 98  0.1614281391
## 99  0.1515862694
## 100 0.1435793413
## 101 0.1457512412
## 102 0.1419116541
## 103 0.2254528043
## 104 0.1904148277
## 105 0.1404309270
## 106 0.1377186808
## 107 0.1692300084
## 108 0.1856925353
## 109 0.1443197696
## 110 0.1424830159
## 111 0.1363088037
## 112 0.1747654107
## 113 0.1515548088
## 114 0.1563573283
## 115 0.1727420035
## 116 0.6468901108
## 117 0.1389927058
## 118 0.1840837732
## 119 0.1404309270
## 120 0.1692300084
## 121 0.1880111466
## 122 0.4493650942
## 123 0.2521658375
## 124 0.1464161009
## 125 0.1653926614
## 126 0.1975959852
## 127 0.1417163223
## 128 0.2847319465
## 129 0.1735761520
## 130 0.1536155447
## 131 0.2360983541
## 132 0.1497890704
## 133 0.1452064357
## 134 0.5461073372
## 135 0.1409094449
## 136 0.2064720486
## 137 0.2521658375
## 138 0.1559078956
## 139 0.1830119058
## 140 0.5846341256
## 141 0.3003691881
## 142 0.2521658375
## 143 0.1515862694
## 144 0.4964319167
## 145 0.2159723978
## 146 0.1620028202
## 147 0.1386159095
## 148 0.1799197276
## 149 0.1563573283
## 150 0.2931382097
## 151 0.1608662531
## 152 0.3753479534
## 153 0.1446167111
## 154 0.3256158338
## 155 0.1446167111
## 156 0.5912748179
## 157 0.8144610423
## 158 0.1540132909
## 159 0.3708249399
## 160 0.1446167111
## 161 0.1540132909
## 162 0.1620028202
## 163 0.1404309270
## 164 0.5187708997
## 165 0.3360459679
## 166 0.1356824551
## 167 0.2057418306
## 168 0.1360079275
## 169 0.2174746693
## 170 0.1363978537
## 171 0.2405121044
## 172 0.1427168948
## 173 0.2284688532
## 174 0.1846833368
## 175 0.1922394935
## 176 0.1996657934
## 177 0.1398855122
## 178 0.1540132909
## 179 0.4175655653
## 180 0.1614281391
## 181 0.1374833974
## 182 0.2297396071
## 183 0.2265769767
## 184 0.1909823709
## 185 0.7137657573
## 186 0.1904148277
## 187 0.1404309270
## 188 0.3003691881
## 189 0.7568495617
## 190 0.8341235407
## 191 0.1443197696
## 192 0.1424830159
## 193 0.1363088037
## 194 0.2493353882
## 195 0.1515548088
## 196 0.1563573283
## 197 0.1398938527
## 198 0.2057418306
## 199 0.3990560253
## 200 0.1840837732
## 201 0.1404309270
## 202 0.1692300084
## 203 0.1880111466
## 204 0.1470080371
## 205 0.1484731717
## 206 0.1368794011
## 207 0.1653926614
## 208 0.1975959852
## 209 0.1417163223
## 210 0.1519384372
## 211 0.7834497078
## 212 0.1536155447
## 213 0.1392561104
## 214 0.1497890704
## 215 0.1452064357
## 216 0.1512418209
## 217 0.1818708075
## 218 0.1580018411
## 219 0.4836110879
## 220 0.6208336470
## 221 0.2877915668
## 222 0.3003691881
## 223 0.1536155447
## 224 0.1484731717
## 225 0.1515862694
## 226 0.1775555507
## 227 0.2159723978
## 228 0.1620028202
## 229 0.1614281391
## 230 0.8144610423
## 231 0.3256158338
## 232 0.1412199315
## 233 0.1608662531
## 234 0.6955497199
## 235 0.2159723978
## 236 0.1563573283
## 237 0.2159723978
## 238 0.1540132909
## 239 0.1389795480
## 240 0.5122683003
## 241 0.3040587530
## 242 0.2176422243
## 243 0.3883738150
## 244 0.5912748179
## 245 0.1620028202
## 246 0.4964319167
## 247 0.5187708997
## 248 0.3360459679
nn$weights
## [[1]]
## [[1]][[1]]
##                [,1]          [,2]
## [1,] -15.3376080005  5.3770334252
## [2,]  -1.4466886467 -0.1168610322
## [3,]  -0.6655894585  1.7859617085
## [4,]  10.6647815057 -2.1152179607
## [5,]  22.7053998652 -3.2194118987
## 
## [[1]][[2]]
##              [,1]
## [1,]  3.431445688
## [2,] 55.061113050
## [3,] -5.283846115
nn$result.matrix
##                                         1
## error                    122.431838042538
## reached.threshold          0.008929426138
## steps                   3943.000000000000
## Intercept.to.1layhid1    -15.337608000541
## age.to.1layhid1           -1.446688646682
## parity.to.1layhid1        -0.665589458545
## induced.to.1layhid1       10.664781505723
## spontaneous.to.1layhid1   22.705399865179
## Intercept.to.1layhid2      5.377033425201
## age.to.1layhid2           -0.116861032154
## parity.to.1layhid2         1.785961708453
## induced.to.1layhid2       -2.115217960712
## spontaneous.to.1layhid2   -3.219411898682
## Intercept.to.case          3.431445687646
## 1layhid.1.to.case         55.061113049651
## 1layhid.2.to.case         -5.283846114669
nn$covariate
##        [,1] [,2] [,3] [,4]
##   [1,]   26    6    1    2
##   [2,]   42    1    1    0
##   [3,]   39    6    2    0
##   [4,]   34    4    2    0
##   [5,]   35    3    1    1
##   [6,]   36    4    2    1
##   [7,]   23    1    0    0
##   [8,]   32    2    0    0
##   [9,]   21    1    0    1
##  [10,]   28    2    0    0
##  [11,]   29    2    1    0
##  [12,]   37    4    2    1
##  [13,]   31    1    1    0
##  [14,]   29    3    2    0
##  [15,]   31    2    1    1
##  [16,]   27    2    2    0
##  [17,]   30    5    2    1
##  [18,]   26    1    0    1
##  [19,]   25    3    2    1
##  [20,]   44    1    0    1
##  [21,]   40    1    0    1
##  [22,]   35    2    2    0
##  [23,]   28    2    0    2
##  [24,]   36    1    0    1
##  [25,]   27    2    1    1
##  [26,]   40    2    0    2
##  [27,]   38    2    0    2
##  [28,]   34    3    0    2
##  [29,]   28    4    1    2
##  [30,]   30    4    2    0
##  [31,]   32    1    0    1
##  [32,]   34    2    1    0
##  [33,]   42    1    1    0
##  [34,]   32    2    0    2
##  [35,]   39    1    1    0
##  [36,]   35    2    0    2
##  [37,]   36    1    0    1
##  [38,]   34    3    1    2
##  [39,]   30    3    0    0
##  [40,]   28    1    0    1
##  [41,]   39    3    0    2
##  [42,]   35    1    0    0
##  [43,]   41    1    0    0
##  [44,]   37    2    1    1
##  [45,]   30    1    0    0
##  [46,]   37    1    1    0
##  [47,]   28    2    0    2
##  [48,]   27    4    2    0
##  [49,]   26    2    2    0
##  [50,]   38    3    0    2
##  [51,]   24    3    1    2
##  [52,]   36    5    1    2
##  [53,]   27    3    1    1
##  [54,]   28    1    0    1
##  [55,]   29    2    0    2
##  [56,]   36    2    0    2
##  [57,]   28    2    1    0
##  [58,]   28    2    0    2
##  [59,]   28    1    0    1
##  [60,]   27    2    0    2
##  [61,]   35    2    0    2
##  [62,]   25    1    0    1
##  [63,]   34    1    0    1
##  [64,]   31    2    0    2
##  [65,]   26    2    1    0
##  [66,]   32    1    0    1
##  [67,]   21    1    0    1
##  [68,]   28    3    1    2
##  [69,]   37    3    0    2
##  [70,]   25    1    1    0
##  [71,]   32    1    1    0
##  [72,]   25    1    0    1
##  [73,]   31    1    0    1
##  [74,]   38    6    0    2
##  [75,]   26    2    0    2
##  [76,]   31    1    0    1
##  [77,]   31    2    0    1
##  [78,]   25    1    1    0
##  [79,]   31    1    0    1
##  [80,]   34    1    0    1
##  [81,]   35    2    2    0
##  [82,]   29    1    0    1
##  [83,]   23    1    0    1
##  [84,]   26    6    2    0
##  [85,]   42    1    0    0
##  [86,]   39    6    2    0
##  [87,]   34    4    0    1
##  [88,]   35    3    2    0
##  [89,]   36    4    1    1
##  [90,]   23    1    0    0
##  [91,]   32    2    2    0
##  [92,]   21    1    0    1
##  [93,]   28    2    0    1
##  [94,]   29    2    0    0
##  [95,]   37    4    1    1
##  [96,]   31    1    0    0
##  [97,]   29    3    0    1
##  [98,]   31    2    1    0
##  [99,]   27    2    1    0
## [100,]   30    5    0    2
## [101,]   26    1    0    0
## [102,]   25    3    0    1
## [103,]   44    1    0    0
## [104,]   40    1    0    0
## [105,]   35    2    0    0
## [106,]   28    2    0    0
## [107,]   36    1    0    0
## [108,]   27    2    0    1
## [109,]   40    2    0    0
## [110,]   38    2    0    0
## [111,]   34    3    0    0
## [112,]   28    4    0    2
## [113,]   30    4    1    1
## [114,]   32    1    0    0
## [115,]   34    2    1    0
## [116,]   42    1    1    0
## [117,]   32    2    0    0
## [118,]   39    1    0    0
## [119,]   35    2    0    0
## [120,]   36    1    0    0
## [121,]   34    3    2    0
## [122,]   30    3    0    2
## [123,]   28    1    1    0
## [124,]   39    3    1    0
## [125,]   35    1    0    0
## [126,]   41    1    0    0
## [127,]   37    2    0    0
## [128,]   30    1    1    0
## [129,]   37    1    0    0
## [130,]   28    2    1    0
## [131,]   27    4    2    1
## [132,]   26    2    1    0
## [133,]   38    3    1    0
## [134,]   24    3    2    1
## [135,]   36    5    1    1
## [136,]   27    3    1    1
## [137,]   28    1    1    0
## [138,]   29    2    1    0
## [139,]   36    2    1    0
## [140,]   28    2    1    1
## [141,]   28    2    2    0
## [142,]   28    1    1    0
## [143,]   27    2    1    0
## [144,]   35    2    2    0
## [145,]   25    1    1    0
## [146,]   34    1    0    0
## [147,]   31    2    0    0
## [148,]   26    2    0    1
## [149,]   32    1    0    0
## [150,]   21    1    0    1
## [151,]   28    3    2    0
## [152,]   37    3    1    1
## [153,]   25    1    0    0
## [154,]   32    1    1    0
## [155,]   25    1    0    0
## [156,]   31    1    0    1
## [157,]   26    2    0    2
## [158,]   31    1    0    0
## [159,]   31    2    2    0
## [160,]   25    1    0    0
## [161,]   31    1    0    0
## [162,]   34    1    0    0
## [163,]   35    2    0    0
## [164,]   29    1    0    1
## [165,]   23    1    0    1
## [166,]   26    6    2    0
## [167,]   42    1    0    0
## [168,]   39    6    2    0
## [169,]   34    4    0    2
## [170,]   35    3    0    0
## [171,]   36    4    0    2
## [172,]   23    1    0    0
## [173,]   32    2    0    1
## [174,]   21    1    1    0
## [175,]   28    2    0    1
## [176,]   29    2    0    1
## [177,]   37    4    0    1
## [178,]   31    1    0    0
## [179,]   29    3    0    2
## [180,]   31    2    1    0
## [181,]   27    2    0    0
## [182,]   30    5    1    2
## [183,]   26    1    1    0
## [184,]   25    3    1    1
## [185,]   44    1    1    0
## [186,]   40    1    0    0
## [187,]   35    2    0    0
## [188,]   28    2    2    0
## [189,]   36    1    0    1
## [190,]   27    2    0    2
## [191,]   40    2    0    0
## [192,]   38    2    0    0
## [193,]   34    3    0    0
## [194,]   28    4    2    1
## [195,]   30    4    1    1
## [196,]   32    1    0    0
## [197,]   34    2    0    0
## [198,]   42    1    0    0
## [199,]   32    2    2    0
## [200,]   39    1    0    0
## [201,]   35    2    0    0
## [202,]   36    1    0    0
## [203,]   34    3    2    0
## [204,]   30    3    0    1
## [205,]   28    1    0    0
## [206,]   39    3    0    0
## [207,]   35    1    0    0
## [208,]   41    1    0    0
## [209,]   37    2    0    0
## [210,]   30    1    0    0
## [211,]   37    1    0    1
## [212,]   28    2    1    0
## [213,]   27    4    2    0
## [214,]   26    2    1    0
## [215,]   38    3    1    0
## [216,]   24    3    2    0
## [217,]   36    5    2    1
## [218,]   27    3    2    0
## [219,]   28    1    0    1
## [220,]   29    2    1    1
## [221,]   36    2    0    1
## [222,]   28    2    2    0
## [223,]   28    2    1    0
## [224,]   28    1    0    0
## [225,]   27    2    1    0
## [226,]   35    2    1    0
## [227,]   25    1    1    0
## [228,]   34    1    0    0
## [229,]   31    2    1    0
## [230,]   26    2    0    2
## [231,]   32    1    1    0
## [232,]   21    1    0    0
## [233,]   28    3    2    0
## [234,]   37    3    0    2
## [235,]   25    1    1    0
## [236,]   32    1    0    0
## [237,]   25    1    1    0
## [238,]   31    1    0    0
## [239,]   38    6    0    2
## [240,]   26    2    1    1
## [241,]   31    1    1    0
## [242,]   31    2    0    1
## [243,]   25    1    0    1
## [244,]   31    1    0    1
## [245,]   34    1    0    0
## [246,]   35    2    2    0
## [247,]   29    1    0    1
## [248,]   23    1    0    1
infert$case
##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [71] 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [106] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [141] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [176] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [211] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [246] 0 0 0
nn$net.result[[1]]
##             [,1]
## 1   0.9999994796
## 2   0.6468901108
## 3   0.1360079275
## 4   0.1439510491
## 5   0.3252413541
## 6   0.4290431427
## 7   0.1427168948
## 8   0.1389927058
## 9   0.2931382097
## 10  0.1377186808
## 11  0.1559078956
## 12  0.4615821111
## 13  0.3040587530
## 14  0.1641065131
## 15  0.6900969156
## 16  0.2814344776
## 17  0.1579575723
## 18  0.4180609931
## 19  0.5790256456
## 20  0.9008557819
## 21  0.8473752783
## 22  0.4964319167
## 23  0.8520110025
## 24  0.7568495617
## 25  0.5482314480
## 26  0.9472100700
## 27  0.9405907319
## 28  0.5906747428
## 29  0.9873252753
## 30  0.1408065127
## 31  0.6273669965
## 32  0.1727420035
## 33  0.6468901108
## 34  0.9034188474
## 35  0.5385865265
## 36  0.9261493685
## 37  0.7568495617
## 38  0.9357534309
## 39  0.1360407121
## 40  0.4836110879
## 41  0.7563884578
## 42  0.1653926614
## 43  0.1975959852
## 44  0.8441384962
## 45  0.1519384372
## 46  0.4682768975
## 47  0.8520110025
## 48  0.1392561104
## 49  0.2645551234
## 50  0.7271545835
## 51  1.0000000000
## 52  0.2841352608
## 53  0.2064720486
## 54  0.4836110879
## 55  0.8677450277
## 56  0.9317004753
## 57  0.1536155447
## 58  0.8520110025
## 59  0.4836110879
## 60  0.8341235407
## 61  0.9261493685
## 62  0.3883738150
## 63  0.6960887718
## 64  0.8932387395
## 65  0.1497890704
## 66  0.6273669965
## 67  0.2931382097
## 68  0.9999606816
## 69  0.6955497199
## 70  0.2159723978
## 71  0.3256158338
## 72  0.3883738150
## 73  0.5912748179
## 74  0.1389795480
## 75  0.8144610423
## 76  0.5912748179
## 77  0.2176422243
## 78  0.2159723978
## 79  0.5912748179
## 80  0.6960887718
## 81  0.4964319167
## 82  0.5187708997
## 83  0.3360459679
## 84  0.1356824551
## 85  0.2057418306
## 86  0.1360079275
## 87  0.1386100567
## 88  0.1948694287
## 89  0.1684278966
## 90  0.1427168948
## 91  0.3990560253
## 92  0.2931382097
## 93  0.1922394935
## 94  0.1379833226
## 95  0.1726675112
## 96  0.1540132909
## 97  0.1457313943
## 98  0.1614281391
## 99  0.1515862694
## 100 0.1435793413
## 101 0.1457512412
## 102 0.1419116541
## 103 0.2254528043
## 104 0.1904148277
## 105 0.1404309270
## 106 0.1377186808
## 107 0.1692300084
## 108 0.1856925353
## 109 0.1443197696
## 110 0.1424830159
## 111 0.1363088037
## 112 0.1747654107
## 113 0.1515548088
## 114 0.1563573283
## 115 0.1727420035
## 116 0.6468901108
## 117 0.1389927058
## 118 0.1840837732
## 119 0.1404309270
## 120 0.1692300084
## 121 0.1880111466
## 122 0.4493650942
## 123 0.2521658375
## 124 0.1464161009
## 125 0.1653926614
## 126 0.1975959852
## 127 0.1417163223
## 128 0.2847319465
## 129 0.1735761520
## 130 0.1536155447
## 131 0.2360983541
## 132 0.1497890704
## 133 0.1452064357
## 134 0.5461073372
## 135 0.1409094449
## 136 0.2064720486
## 137 0.2521658375
## 138 0.1559078956
## 139 0.1830119058
## 140 0.5846341256
## 141 0.3003691881
## 142 0.2521658375
## 143 0.1515862694
## 144 0.4964319167
## 145 0.2159723978
## 146 0.1620028202
## 147 0.1386159095
## 148 0.1799197276
## 149 0.1563573283
## 150 0.2931382097
## 151 0.1608662531
## 152 0.3753479534
## 153 0.1446167111
## 154 0.3256158338
## 155 0.1446167111
## 156 0.5912748179
## 157 0.8144610423
## 158 0.1540132909
## 159 0.3708249399
## 160 0.1446167111
## 161 0.1540132909
## 162 0.1620028202
## 163 0.1404309270
## 164 0.5187708997
## 165 0.3360459679
## 166 0.1356824551
## 167 0.2057418306
## 168 0.1360079275
## 169 0.2174746693
## 170 0.1363978537
## 171 0.2405121044
## 172 0.1427168948
## 173 0.2284688532
## 174 0.1846833368
## 175 0.1922394935
## 176 0.1996657934
## 177 0.1398855122
## 178 0.1540132909
## 179 0.4175655653
## 180 0.1614281391
## 181 0.1374833974
## 182 0.2297396071
## 183 0.2265769767
## 184 0.1909823709
## 185 0.7137657573
## 186 0.1904148277
## 187 0.1404309270
## 188 0.3003691881
## 189 0.7568495617
## 190 0.8341235407
## 191 0.1443197696
## 192 0.1424830159
## 193 0.1363088037
## 194 0.2493353882
## 195 0.1515548088
## 196 0.1563573283
## 197 0.1398938527
## 198 0.2057418306
## 199 0.3990560253
## 200 0.1840837732
## 201 0.1404309270
## 202 0.1692300084
## 203 0.1880111466
## 204 0.1470080371
## 205 0.1484731717
## 206 0.1368794011
## 207 0.1653926614
## 208 0.1975959852
## 209 0.1417163223
## 210 0.1519384372
## 211 0.7834497078
## 212 0.1536155447
## 213 0.1392561104
## 214 0.1497890704
## 215 0.1452064357
## 216 0.1512418209
## 217 0.1818708075
## 218 0.1580018411
## 219 0.4836110879
## 220 0.6208336470
## 221 0.2877915668
## 222 0.3003691881
## 223 0.1536155447
## 224 0.1484731717
## 225 0.1515862694
## 226 0.1775555507
## 227 0.2159723978
## 228 0.1620028202
## 229 0.1614281391
## 230 0.8144610423
## 231 0.3256158338
## 232 0.1412199315
## 233 0.1608662531
## 234 0.6955497199
## 235 0.2159723978
## 236 0.1563573283
## 237 0.2159723978
## 238 0.1540132909
## 239 0.1389795480
## 240 0.5122683003
## 241 0.3040587530
## 242 0.2176422243
## 243 0.3883738150
## 244 0.5912748179
## 245 0.1620028202
## 246 0.4964319167
## 247 0.5187708997
## 248 0.3360459679
nn1=ifelse(nn$net.result[[1]]>0.5,1,0)
nn1
##     [,1]
## 1      1
## 2      1
## 3      0
## 4      0
## 5      0
## 6      0
## 7      0
## 8      0
## 9      0
## 10     0
## 11     0
## 12     0
## 13     0
## 14     0
## 15     1
## 16     0
## 17     0
## 18     0
## 19     1
## 20     1
## 21     1
## 22     0
## 23     1
## 24     1
## 25     1
## 26     1
## 27     1
## 28     1
## 29     1
## 30     0
## 31     1
## 32     0
## 33     1
## 34     1
## 35     1
## 36     1
## 37     1
## 38     1
## 39     0
## 40     0
## 41     1
## 42     0
## 43     0
## 44     1
## 45     0
## 46     0
## 47     1
## 48     0
## 49     0
## 50     1
## 51     1
## 52     0
## 53     0
## 54     0
## 55     1
## 56     1
## 57     0
## 58     1
## 59     0
## 60     1
## 61     1
## 62     0
## 63     1
## 64     1
## 65     0
## 66     1
## 67     0
## 68     1
## 69     1
## 70     0
## 71     0
## 72     0
## 73     1
## 74     0
## 75     1
## 76     1
## 77     0
## 78     0
## 79     1
## 80     1
## 81     0
## 82     1
## 83     0
## 84     0
## 85     0
## 86     0
## 87     0
## 88     0
## 89     0
## 90     0
## 91     0
## 92     0
## 93     0
## 94     0
## 95     0
## 96     0
## 97     0
## 98     0
## 99     0
## 100    0
## 101    0
## 102    0
## 103    0
## 104    0
## 105    0
## 106    0
## 107    0
## 108    0
## 109    0
## 110    0
## 111    0
## 112    0
## 113    0
## 114    0
## 115    0
## 116    1
## 117    0
## 118    0
## 119    0
## 120    0
## 121    0
## 122    0
## 123    0
## 124    0
## 125    0
## 126    0
## 127    0
## 128    0
## 129    0
## 130    0
## 131    0
## 132    0
## 133    0
## 134    1
## 135    0
## 136    0
## 137    0
## 138    0
## 139    0
## 140    1
## 141    0
## 142    0
## 143    0
## 144    0
## 145    0
## 146    0
## 147    0
## 148    0
## 149    0
## 150    0
## 151    0
## 152    0
## 153    0
## 154    0
## 155    0
## 156    1
## 157    1
## 158    0
## 159    0
## 160    0
## 161    0
## 162    0
## 163    0
## 164    1
## 165    0
## 166    0
## 167    0
## 168    0
## 169    0
## 170    0
## 171    0
## 172    0
## 173    0
## 174    0
## 175    0
## 176    0
## 177    0
## 178    0
## 179    0
## 180    0
## 181    0
## 182    0
## 183    0
## 184    0
## 185    1
## 186    0
## 187    0
## 188    0
## 189    1
## 190    1
## 191    0
## 192    0
## 193    0
## 194    0
## 195    0
## 196    0
## 197    0
## 198    0
## 199    0
## 200    0
## 201    0
## 202    0
## 203    0
## 204    0
## 205    0
## 206    0
## 207    0
## 208    0
## 209    0
## 210    0
## 211    1
## 212    0
## 213    0
## 214    0
## 215    0
## 216    0
## 217    0
## 218    0
## 219    0
## 220    1
## 221    0
## 222    0
## 223    0
## 224    0
## 225    0
## 226    0
## 227    0
## 228    0
## 229    0
## 230    1
## 231    0
## 232    0
## 233    0
## 234    1
## 235    0
## 236    0
## 237    0
## 238    0
## 239    0
## 240    1
## 241    0
## 242    0
## 243    0
## 244    1
## 245    0
## 246    0
## 247    1
## 248    0
misClassificationError=mean(infert$case !=nn1)
misClassificationError
## [1] 0.2338709677
outputvspred=cbind(infert$case,nn1)
outputvspred
##     [,1] [,2]
## 1      1    1
## 2      1    1
## 3      1    0
## 4      1    0
## 5      1    0
## 6      1    0
## 7      1    0
## 8      1    0
## 9      1    0
## 10     1    0
## 11     1    0
## 12     1    0
## 13     1    0
## 14     1    0
## 15     1    1
## 16     1    0
## 17     1    0
## 18     1    0
## 19     1    1
## 20     1    1
## 21     1    1
## 22     1    0
## 23     1    1
## 24     1    1
## 25     1    1
## 26     1    1
## 27     1    1
## 28     1    1
## 29     1    1
## 30     1    0
## 31     1    1
## 32     1    0
## 33     1    1
## 34     1    1
## 35     1    1
## 36     1    1
## 37     1    1
## 38     1    1
## 39     1    0
## 40     1    0
## 41     1    1
## 42     1    0
## 43     1    0
## 44     1    1
## 45     1    0
## 46     1    0
## 47     1    1
## 48     1    0
## 49     1    0
## 50     1    1
## 51     1    1
## 52     1    0
## 53     1    0
## 54     1    0
## 55     1    1
## 56     1    1
## 57     1    0
## 58     1    1
## 59     1    0
## 60     1    1
## 61     1    1
## 62     1    0
## 63     1    1
## 64     1    1
## 65     1    0
## 66     1    1
## 67     1    0
## 68     1    1
## 69     1    1
## 70     1    0
## 71     1    0
## 72     1    0
## 73     1    1
## 74     1    0
## 75     1    1
## 76     1    1
## 77     1    0
## 78     1    0
## 79     1    1
## 80     1    1
## 81     1    0
## 82     1    1
## 83     1    0
## 84     0    0
## 85     0    0
## 86     0    0
## 87     0    0
## 88     0    0
## 89     0    0
## 90     0    0
## 91     0    0
## 92     0    0
## 93     0    0
## 94     0    0
## 95     0    0
## 96     0    0
## 97     0    0
## 98     0    0
## 99     0    0
## 100    0    0
## 101    0    0
## 102    0    0
## 103    0    0
## 104    0    0
## 105    0    0
## 106    0    0
## 107    0    0
## 108    0    0
## 109    0    0
## 110    0    0
## 111    0    0
## 112    0    0
## 113    0    0
## 114    0    0
## 115    0    0
## 116    0    1
## 117    0    0
## 118    0    0
## 119    0    0
## 120    0    0
## 121    0    0
## 122    0    0
## 123    0    0
## 124    0    0
## 125    0    0
## 126    0    0
## 127    0    0
## 128    0    0
## 129    0    0
## 130    0    0
## 131    0    0
## 132    0    0
## 133    0    0
## 134    0    1
## 135    0    0
## 136    0    0
## 137    0    0
## 138    0    0
## 139    0    0
## 140    0    1
## 141    0    0
## 142    0    0
## 143    0    0
## 144    0    0
## 145    0    0
## 146    0    0
## 147    0    0
## 148    0    0
## 149    0    0
## 150    0    0
## 151    0    0
## 152    0    0
## 153    0    0
## 154    0    0
## 155    0    0
## 156    0    1
## 157    0    1
## 158    0    0
## 159    0    0
## 160    0    0
## 161    0    0
## 162    0    0
## 163    0    0
## 164    0    1
## 165    0    0
## 166    0    0
## 167    0    0
## 168    0    0
## 169    0    0
## 170    0    0
## 171    0    0
## 172    0    0
## 173    0    0
## 174    0    0
## 175    0    0
## 176    0    0
## 177    0    0
## 178    0    0
## 179    0    0
## 180    0    0
## 181    0    0
## 182    0    0
## 183    0    0
## 184    0    0
## 185    0    1
## 186    0    0
## 187    0    0
## 188    0    0
## 189    0    1
## 190    0    1
## 191    0    0
## 192    0    0
## 193    0    0
## 194    0    0
## 195    0    0
## 196    0    0
## 197    0    0
## 198    0    0
## 199    0    0
## 200    0    0
## 201    0    0
## 202    0    0
## 203    0    0
## 204    0    0
## 205    0    0
## 206    0    0
## 207    0    0
## 208    0    0
## 209    0    0
## 210    0    0
## 211    0    1
## 212    0    0
## 213    0    0
## 214    0    0
## 215    0    0
## 216    0    0
## 217    0    0
## 218    0    0
## 219    0    0
## 220    0    1
## 221    0    0
## 222    0    0
## 223    0    0
## 224    0    0
## 225    0    0
## 226    0    0
## 227    0    0
## 228    0    0
## 229    0    0
## 230    0    1
## 231    0    0
## 232    0    0
## 233    0    0
## 234    0    1
## 235    0    0
## 236    0    0
## 237    0    0
## 238    0    0
## 239    0    0
## 240    0    1
## 241    0    0
## 242    0    0
## 243    0    0
## 244    0    1
## 245    0    0
## 246    0    0
## 247    0    1
## 248    0    0
## using back propagation algorithm
nn.bp=neuralnet(case~age+parity+induced+spontaneous,data=infert,hidden=2,learningrate = 0.01,algorithm = "backprop",err.fct = "ce",linear.output = FALSE)
nn.bp
## Call: neuralnet(formula = case ~ age + parity + induced + spontaneous,     data = infert, hidden = 2, learningrate = 0.01, algorithm = "backprop",     err.fct = "ce", linear.output = FALSE)
## 
## 1 repetition was calculated.
## 
##         Error Reached Threshold Steps
## 1 158.0855556    0.004832906488    12
plot(nn.bp)
nn # error rate is less when compared to back propagation
## Call: neuralnet(formula = case ~ age + parity + induced + spontaneous,     data = infert, hidden = 2, err.fct = "ce", linear.output = FALSE)
## 
## 1 repetition was calculated.
## 
##        Error Reached Threshold Steps
## 1 122.431838    0.008929426138  3943
# using nn for prediction
new.output=compute(nn,covariate = matrix(c(22,1,0,0,
                                           22,1,0,0,
                                           22,1,0,1,
                                           22,1,1,1),
                                         byrow=TRUE,ncol=4))

new.output$net.result
##              [,1]
## [1,] 0.1419239639
## [2,] 0.1419239639
## [3,] 0.3134496668
## [4,] 0.8491240207
##############################
#### confidence interval######
#############################

ci=confidence.interval(nn,alpha = 0.05)
ci
## $lower.ci
## $lower.ci[[1]]
## $lower.ci[[1]][[1]]
##               [,1]          [,2]
## [1,] -15.563094198   1.627916766
## [2,]  -1.975123522  -0.293346237
## [3,]  -1.915324422  -2.259790376
## [4,]   7.017020197  -6.086122813
## [5,]  15.345787369 -10.085124185
## 
## $lower.ci[[1]][[2]]
##              [,1]
## [1,] -12.02392121
## [2,]  53.77197102
## [3,] -20.92319733
## 
## 
## 
## $upper.ci
## $upper.ci[[1]]
## $upper.ci[[1]][[1]]
##                [,1]          [,2]
## [1,] -15.1121218031 9.12615008422
## [2,]  -0.9182537715 0.05962417266
## [3,]   0.5841455046 5.83171379300
## [4,]  14.3125428148 1.85568689118
## [5,]  30.0650123615 3.64630038745
## 
## $upper.ci[[1]][[2]]
##             [,1]
## [1,] 18.88681258
## [2,] 56.35025508
## [3,] 10.35550510
## 
## 
## 
## $nic
## [1] 130.8731172
##############################
### VIsualize the results ###
#############################
par(mfrow=c(2,2))
gwplot(nn,selected.covariate="age",min=-2.5,max = 5)

gwplot(nn,selected.covariate="parity",min=-2.5,max = 5)

gwplot(nn,selected.covariate="induced",min=-2.5,max = 5)

gwplot(nn,selected.covariate="spontaneous",min=-2.5,max = 5)