Working Data Loading

load("./crimtab.RData")
ls()
## [1] "crimtab.2"       "crimtab.df"      "crimtab.long"    "crimtab.long.df"
ls.str()
## crimtab.2 :  'table' int [1:42, 1:22] 0 0 0 0 0 0 1 0 0 0 ...
## crimtab.df : 'data.frame':   924 obs. of  3 variables:
##  $ finger: num  9.4 9.5 9.6 9.7 9.8 9.9 10 10.1 10.2 10.3 ...
##  $ height: num  56 56 56 56 56 56 56 56 56 56 ...
##  $ Freq  : int  0 0 0 0 0 0 1 0 0 0 ...
## crimtab.long :  num [1:3000, 1:2] 10 10.3 9.9 10.2 10.2 10.3 10.4 10.7 10 10.1 ...
## crimtab.long.df : 'data.frame':  3000 obs. of  2 variables:
##  $ finger: num  10 10.3 9.9 10.2 10.2 10.3 10.4 10.7 10 10.1 ...
##  $ height: num  56 57 58 58 58 58 58 58 59 59 ...
head(crimtab.long.df)
##   finger height
## 1   10.0     56
## 2   10.3     57
## 3    9.9     58
## 4   10.2     58
## 5   10.2     58
## 6   10.3     58

Graphic Representation

Base Graphics

  • 키와 손가락길이의 산점도
# plot(finger ~ height, data = crimtab.long.df)
plot(crimtab.long.df[2:1])

  • 변수 각각의 히스토그램은?
par(mfrow = c(1, 2))
hist(crimtab.long.df$height, main = "Histogram of Height", xlab = "height(inches)")
hist(crimtab.long.df$finger, main = "Histogram of Finger Length", xlab = "finger length(cm)")

# hist(crimtab.long.df["height"], main="Histogram of Height", xlab="height(inches)")
# hist(crimtab.long.df["finger"], main="Histogram of Finger Length", xlab= "finger length(cm)")
  • 평균과 표준편차를 한번에 구하려면 다음과 같이 anonymous function을 작성하고 mapply() 또는 sapply()를 이용하는 게 편함. 이를 모수로 하는 정규곡선을 덧씌워 볼 것.
    • mean_sd()anonymous function 으로 평균과 표준편차를 계산해서 출력하는 함수임. 이와 같은 함수를 저장해 놓으려면 dump()를 이용함.
    • 이와 같이 계산한 평균과 표준편차를 모수로 하는 정규곡선을 덧씌워 볼 것.
mean_sd <- function(x) {
  mean <- mean(x, na.rm = TRUE)
  sd <- sd(x)
  return(c(mean = mean, sd = sd))
# list(mean = mean, sd = sd)
}
dump("mean_sd", file = "mean_sd.R")
crimtab.stat <- sapply(crimtab.long.df, mean_sd)
# crimtab.stat <- mapply(mean_sd, crimtab.long.df)
# apply(crimtab.long, 2, mean)
# apply(crimtab.long, 2, sd)
str(crimtab.stat)
##  num [1:2, 1:2] 11.547 0.549 65.473 2.558
##  - attr(*, "dimnames")=List of 2
##   ..$ : chr [1:2] "mean" "sd"
##   ..$ : chr [1:2] "finger" "height"
  • crimtab.stat이 어떤 성격을 갖는지 다음 질문과 추출 작업을 통해서 알아보자.
is.matrix(crimtab.stat)
## [1] TRUE
is.table(crimtab.stat)
## [1] FALSE
is.list(crimtab.stat)
## [1] FALSE
is.data.frame(crimtab.stat)
## [1] FALSE
crimtab.stat[, 1]
##       mean         sd 
## 11.5473667  0.5487137
crimtab.stat[, "finger"]
##       mean         sd 
## 11.5473667  0.5487137
crimtab.stat[, "finger"][1]
##     mean 
## 11.54737
crimtab.stat[, "finger"][[1]]
## [1] 11.54737
crimtab.stat[1]
## [1] 11.54737
crimtab.stat[2:3]
## [1]  0.5487137 65.4730000
# crimtab.stat["finger"]
# crimtab.stat$finger

matrix 를 data frame 으로 변환하면

(crimtab.stat.df <- data.frame(crimtab.stat))
##          finger    height
## mean 11.5473667 65.473000
## sd    0.5487137  2.557757
is.matrix(crimtab.stat.df)
## [1] FALSE
is.table(crimtab.stat.df)
## [1] FALSE
is.list(crimtab.stat.df)
## [1] TRUE
is.data.frame(crimtab.stat.df)
## [1] TRUE
crimtab.stat.df[, 1]
## [1] 11.5473667  0.5487137
str(crimtab.stat.df[, 1])
##  num [1:2] 11.547 0.549
crimtab.stat.df[, "finger"]
## [1] 11.5473667  0.5487137
str(crimtab.stat.df[, "finger"])
##  num [1:2] 11.547 0.549
crimtab.stat.df[, "finger"][1]
## [1] 11.54737
str(crimtab.stat.df[, "finger"][1])
##  num 11.5
crimtab.stat.df[, "finger"][[1]]
## [1] 11.54737
str(crimtab.stat.df[, "finger"][[1]])
##  num 11.5
crimtab.stat.df[1]
##          finger
## mean 11.5473667
## sd    0.5487137
str(crimtab.stat.df[1])
## 'data.frame':    2 obs. of  1 variable:
##  $ finger: num  11.547 0.549
crimtab.stat.df["finger"]
##          finger
## mean 11.5473667
## sd    0.5487137
str(crimtab.stat.df["finger"])
## 'data.frame':    2 obs. of  1 variable:
##  $ finger: num  11.547 0.549
crimtab.stat.df["finger"][1]
##          finger
## mean 11.5473667
## sd    0.5487137
str(crimtab.stat.df["finger"][1])
## 'data.frame':    2 obs. of  1 variable:
##  $ finger: num  11.547 0.549
crimtab.stat.df["finger"][[1]]
## [1] 11.5473667  0.5487137
str(crimtab.stat.df["finger"][[1]])
##  num [1:2] 11.547 0.549
crimtab.stat.df$finger
## [1] 11.5473667  0.5487137
str(crimtab.stat.df$finger)
##  num [1:2] 11.547 0.549
crimtab.stat.df$finger[1]
## [1] 11.54737
str(crimtab.stat.df$finger[1])
##  num 11.5
crimtab.stat.df$finger[[1]]
## [1] 11.54737
str(crimtab.stat.df$finger[[1]])
##  num 11.5

ggplot

  • 키와 손가락 길이의 산점도
library(ggplot2)
g1 <- ggplot(data = crimtab.long.df, mapping = aes(x = height, y = finger)) 
g2 <- g1 + geom_point()
g2

  • 투명도 변경 : alpha = 0.9
g2.2 <- g1 + geom_point(alpha = 0.9)
g2.2

  • 투명도 변경 : alpha = 0.5
g2.3 <- g1 + geom_point(alpha = 0.5)
g2.3

  • 투명도 변경 : alpha = 0.1
g2.4 <- g1 + geom_point(alpha = 0.1)
g2.4

  • 중복점 흐트러놓기 : position = jitter
g2.5 <- g1 + geom_point(position = "jitter")
g2.5

  • 점의 크기를 줄이고 중복점 흐트러놓기 : position = jitter, size = 0.7
g2.6 <- g1 + geom_point(position = "jitter", size = 0.7)
g2.6

  • 동일한 효과 : position = position_jitter(), size = 0.7
g2.7 <- g1 + geom_point(position = position_jitter(), size = 0.7)
g2.7

  • 흐트러놓는 폭 조절 : width = 1, height = 0, size = 0.7
g2.8 <- g1 + geom_point(position = position_jitter(width = 1, height = 0), size = 0.7)
g2.8

  • 흐트러놓는 폭과 높이 조절 : width = 1, height = 0.1, size = 0.7
g2.9 <- g1 + geom_point(position = position_jitter(width = 1, height = 0.1), size = 0.7)
g2.9

  • 흑백 테마 : theme_bw()
g3 <- g2.9 +
  theme_bw()
g3

히스토그램

h1 <- ggplot(data = crimtab.long.df, aes(x = height)) 
h1 + geom_histogram(alpha = 0.5)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

f1 <- ggplot(data = crimtab.long.df, aes(x = finger))
f1 + geom_histogram(alpha = 0.5)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

h1 + geom_histogram(aes(y = ..density..), binwidth = 1, alpha = 0.5)

f1 + geom_histogram(aes(y = ..density..), binwidth = 0.1, alpha = 0.5)

(g.h.1 <- h1 + 
    geom_histogram(aes(y = ..density..), 
                   binwidth = 1, 
                   fill = "white", 
                   colour = "black"))

(g.h <- g.h.1 +
    theme_bw() +
    scale_x_continuous(name = "", breaks = NULL))

(g.f.1 <- f1 + 
    geom_histogram(aes(y = ..density..), 
                   binwidth = 0.2, 
                   fill = "white", 
                   colour = "black"))

(g.f <- g.f.1 +
    theme_bw() +
    scale_x_continuous(name = "", breaks = NULL) +
    coord_flip())

평균 위치를 화살표로 나타내려면

library(grid)
(mean.finger <- crimtab.stat[, 1][[1]])
## [1] 11.54737
(sd.finger <- crimtab.stat[, 1][[2]])
## [1] 0.5487137
(mean.height <- crimtab.stat[, 2][[1]])
## [1] 65.473
(sd.height <- crimtab.stat[, 2][[2]])
## [1] 2.557757
x.finger <- seq(9.5, 13.5, length.out = 3000)
y.finger <- dnorm(x.finger, mean = mean.finger, sd = sd.finger)
x.height <- seq(56, 77, length.out = 3000)
y.height <- dnorm(x.height, mean = mean.height, sd = sd.height)
(g.h.2 <- g.h.1 + 
    annotate("segment", 
             x = mean.height, 
             xend = mean.height, 
             y = -0.02, 
             yend = 0, 
             arrow = arrow(length = unit(0.3, "cm"))))

(g.h.3 <- g.h.2 + 
    theme_bw())

(g.h.4 <- g.h.3 + 
    geom_line(aes(x = x.height, y = y.height)))

(g.f.2 <- g.f.1 + 
    annotate("segment", 
             x = mean.finger, 
             xend = mean.finger, 
             y = -0.1, 
             yend = 0, 
             arrow = arrow(length = unit(0.3, "cm"))))

(g.f.3 <- g.f.2 + 
    theme_bw())

(g.f.4 <- g.f.3 + 
    geom_line(aes(x = x.finger, y = y.finger)))

산점도와 히스토그램 함께 배열하기

gridgridExtra 패키지와 함께 blank Grob 설정이 핵심. grid.arrange 사용법에 유의.

library(gridExtra)
blank <- grid.rect(gp = gpar(col = "white"), draw = FALSE)
grid.arrange(g.h, blank, g3, g.f, ncol = 2, widths = c(4, 1), heights = c(1, 4))

Data 갈무리

save.image(file="./crimtab_ggplot.RData")
# cor(crimtab.2.long[,1], crimtab.2.long[,2])