http://marceloarayasalas.weebly.com/



Repeatability of uplifting power experiment

Only in adults

AICs for lme repeatability

Modnames K AICc Delta_AICc ModelLik AICcWt LL Cum.Wt
1 Weight~1 + (~ ID) 3 68.26732 0.000000 1.0000000 0.3803738 -30.50208 0.3803738
4 Weight~(duration_of_trial) + (~ ID) 4 69.40905 1.141730 0.5650365 0.2149251 -29.59341 0.5952989
2 Weight~(time_of_the_day) + (~ ID) 4 70.51460 2.247276 0.3250949 0.1236576 -30.14619 0.7189565
7 Weight~(time_of_the_day) + (duration_of_trial) + (~ ID) 5 70.84782 2.580497 0.2752025 0.1046798 -28.65920 0.8236363
3 Weight~(days_from_1st_trial) + (~ ID) 4 71.08223 2.814913 0.2447650 0.0931022 -30.43001 0.9167385
6 Weight~(days_from_1st_trial) + (duration_of_trial) + (~ ID) 5 72.65223 4.384913 0.1116421 0.0424657 -29.56141 0.9592042
5 Weight~(time_of_the_day) + (days_from_1st_trial) + (~ ID) 5 73.80153 5.534208 0.0628437 0.0239041 -30.13606 0.9831083
8 Weight~(time_of_the_day) + (days_from_1st_trial) + (duration_of_trial) + (~ ID) 6 74.49599 6.228664 0.0444082 0.0168917 -28.62299 1.0000000
####* same results with adult data

sample sizes



*Final uplift power was obtained using trials with the highest 2 flights from trials with at least 8 flights

Repeatability of morphology

Repeatability of morphology for ADULTS

Repeatability of morphology including ACROSS YEARS


Singing activity


AIC on singing activity repeatability models

Modnames K AICc Delta_AICc ModelLik AICcWt LL Cum.Wt
3 rel.act~Lek. + (~ Bird.ID) 5 7.457115 0.000000 1.0000000 0.4038797 1.7714424 0.4038797
4 rel.act~Date + (~ Bird.ID) 4 9.310113 1.852998 0.3959374 0.1599111 -0.3271879 0.5637908
1 rel.act~1 + (~ Bird.ID) 3 9.419563 1.962447 0.3748521 0.1513952 -1.5162330 0.7151860
5 rel.act~Date + Lek. + (~ Bird.ID) 6 9.814742 2.357627 0.3076436 0.1242510 1.8044935 0.8394370
2 rel.act~1 + (~ Lek.) + (~ Bird.ID) 4 10.564312 3.107197 0.2114856 0.0854147 -0.9542873 0.9248517
6 rel.act~1 + (~ Date) + (~ Bird.ID) 4 11.688204 4.231089 0.1205677 0.0486948 -1.5162330 0.9735465
7 rel.act~1 + (~ Date) + (~ Lek.) + (~ Bird.ID) 5 12.908575 5.451459 0.0654984 0.0264535 -0.9542873 1.0000000
##*ra ndom effects in paranthesis

Repeatability

Association among variables

Remove collinear variables with similar information leaving the ones with highest repeatability

Cognition

## DEFINEDNAME: 21 00 00 01 0b 00 00 00 03 00 00 00 00 00 00 0d 3b 02 00 00 00 0d 05 00 00 14 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 04 00 00 00 00 00 00 0d 3b 01 00 00 00 b4 05 00 00 20 00 
## DEFINEDNAME: 20 00 00 01 0b 00 00 00 02 00 00 00 00 00 00 0d 3b 00 00 00 00 a9 02 00 00 09 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 03 00 00 00 00 00 00 0d 3b 02 00 00 00 0d 05 00 00 14 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 04 00 00 00 00 00 00 0d 3b 01 00 00 00 b4 05 00 00 20 00 
## DEFINEDNAME: 20 00 00 01 0b 00 00 00 02 00 00 00 00 00 00 0d 3b 00 00 00 00 a9 02 00 00 09 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 03 00 00 00 00 00 00 0d 3b 02 00 00 00 0d 05 00 00 14 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 04 00 00 00 00 00 00 0d 3b 01 00 00 00 b4 05 00 00 20 00 
## DEFINEDNAME: 20 00 00 01 0b 00 00 00 02 00 00 00 00 00 00 0d 3b 00 00 00 00 a9 02 00 00 09 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 03 00 00 00 00 00 00 0d 3b 02 00 00 00 0d 05 00 00 14 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 04 00 00 00 00 00 00 0d 3b 01 00 00 00 b4 05 00 00 20 00 
## DEFINEDNAME: 20 00 00 01 0b 00 00 00 02 00 00 00 00 00 00 0d 3b 00 00 00 00 a9 02 00 00 09 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 03 00 00 00 00 00 00 0d 3b 02 00 00 00 0d 05 00 00 14 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 04 00 00 00 00 00 00 0d 3b 01 00 00 00 b4 05 00 00 20 00 
## DEFINEDNAME: 20 00 00 01 0b 00 00 00 02 00 00 00 00 00 00 0d 3b 00 00 00 00 a9 02 00 00 09 00
## 
## 143 2013 143 2014 178 2013 203 2013 221 2013 227 2014 231 2014 236 2014 
##       29       33       47       20       50       46       57       73 
## 265 2014 267 2014 271 2014 292 2014 292 2015 300 2014 301 2014 301 2015 
##       27       45       58      134      130       60       42      165 
## 303 2014 312 2014 313 2014 314 2014 316 2014 323 2014 324 2015 331 2014 
##       93      106       32       55       60       65       37       58 
## 336 2014 338 2014 353 2015 356 2015 357 2015 364 2015 
##       35       25       35       88       48      123

repeatability of cognition at different bin sizes

with 18 visits bins

Cummulative cognitive performance

Burn the first 10

Averaging the first 10

SIMULATIONS

High SD

Effect of visiting frequency

## DEFINEDNAME: 21 00 00 01 0b 00 00 00 03 00 00 00 00 00 00 0d 3b 02 00 00 00 0d 05 00 00 14 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 04 00 00 00 00 00 00 0d 3b 01 00 00 00 b4 05 00 00 20 00 
## DEFINEDNAME: 20 00 00 01 0b 00 00 00 02 00 00 00 00 00 00 0d 3b 00 00 00 00 a9 02 00 00 09 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 03 00 00 00 00 00 00 0d 3b 02 00 00 00 0d 05 00 00 14 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 04 00 00 00 00 00 00 0d 3b 01 00 00 00 b4 05 00 00 20 00 
## DEFINEDNAME: 20 00 00 01 0b 00 00 00 02 00 00 00 00 00 00 0d 3b 00 00 00 00 a9 02 00 00 09 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 03 00 00 00 00 00 00 0d 3b 02 00 00 00 0d 05 00 00 14 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 04 00 00 00 00 00 00 0d 3b 01 00 00 00 b4 05 00 00 20 00 
## DEFINEDNAME: 20 00 00 01 0b 00 00 00 02 00 00 00 00 00 00 0d 3b 00 00 00 00 a9 02 00 00 09 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 03 00 00 00 00 00 00 0d 3b 02 00 00 00 0d 05 00 00 14 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 04 00 00 00 00 00 00 0d 3b 01 00 00 00 b4 05 00 00 20 00 
## DEFINEDNAME: 20 00 00 01 0b 00 00 00 02 00 00 00 00 00 00 0d 3b 00 00 00 00 a9 02 00 00 09 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 03 00 00 00 00 00 00 0d 3b 02 00 00 00 0d 05 00 00 14 00 
## DEFINEDNAME: 21 00 00 01 0b 00 00 00 04 00 00 00 00 00 00 0d 3b 01 00 00 00 b4 05 00 00 20 00 
## DEFINEDNAME: 20 00 00 01 0b 00 00 00 02 00 00 00 00 00 00 0d 3b 00 00 00 00 a9 02 00 00 09 00
## 
## Confidence set for the best model
## 
## Method:   raw sum of model probabilities
## 
## 95% confidence set:
##                                               K  AICc Delta_AICc AICcWt
## meancog~1 + (~ Bird.ID)                       3 -9.85       0.00   0.39
## meancog~visit.interv + (~ Bird.ID)            4 -7.97       1.88   0.15
## meancog~vf.score + (~ Bird.ID)                4 -7.80       2.05   0.14
## meancog~n + (~ Bird.ID)                       4 -7.64       2.21   0.13
## meancog~vf.score + n + (~ Bird.ID)            5 -6.08       3.77   0.06
## meancog~visit.interv + n + (~ Bird.ID)        5 -5.85       4.00   0.05
## meancog~vf.score + visit.interv + (~ Bird.ID) 5 -5.64       4.21   0.05
## 
## Model probabilities sum to 0.98
## 
## Multimodel inference on "visit.interv" based on AICc
## 
## AICc table used to obtain model-averaged estimate:
## 
##                                               K  AICc Delta_AICc AICcWt
## meancog~visit.interv + (~ Bird.ID)            4 -7.97       0.00   0.60
## meancog~visit.interv + n + (~ Bird.ID)        5 -5.85       2.11   0.21
## meancog~vf.score + visit.interv + (~ Bird.ID) 5 -5.64       2.32   0.19
##                                               Estimate SE
## meancog~visit.interv + (~ Bird.ID)                   0  0
## meancog~visit.interv + n + (~ Bird.ID)               0  0
## meancog~vf.score + visit.interv + (~ Bird.ID)        0  0
## 
## Model-averaged estimate: 0 
## Unconditional SE: 0 
## 95% Unconditional confidence interval: 0, 0
## 
## Multimodel inference on "vf.score" based on AICc
## 
## AICc table used to obtain model-averaged estimate:
## 
##                                               K  AICc Delta_AICc AICcWt
## meancog~vf.score + (~ Bird.ID)                4 -7.80       0.00   0.57
## meancog~vf.score + n + (~ Bird.ID)            5 -6.08       1.72   0.24
## meancog~vf.score + visit.interv + (~ Bird.ID) 5 -5.64       2.16   0.19
##                                               Estimate   SE
## meancog~vf.score + (~ Bird.ID)                    0.01 0.01
## meancog~vf.score + n + (~ Bird.ID)                0.01 0.01
## meancog~vf.score + visit.interv + (~ Bird.ID)     0.00 0.01
## 
## Model-averaged estimate: 0.01 
## Unconditional SE: 0.01 
## 95% Unconditional confidence interval: -0.02, 0.03

on the subset with high sample size

## 
## Confidence set for the best model
## 
## Method:   raw sum of model probabilities
## 
## 95% confidence set:
##                                    K   AICc Delta_AICc AICcWt
## meancog~1 + (~ Bird.ID)            3 -11.88       0.00   0.62
## meancog~vf.score + (~ Bird.ID)     4  -9.29       2.59   0.17
## meancog~visit.interv + (~ Bird.ID) 4  -8.19       3.70   0.10
## meancog~n + (~ Bird.ID)            4  -7.70       4.18   0.08
## 
## Model probabilities sum to 0.96
## 
## Multimodel inference on "visit.interv" based on AICc
## 
## AICc table used to obtain model-averaged estimate:
## 
##                                    K  AICc Delta_AICc AICcWt Estimate SE
## meancog~visit.interv + (~ Bird.ID) 4 -8.19          0      1        0  0
## 
## Model-averaged estimate: 0 
## Unconditional SE: 0 
## 95% Unconditional confidence interval: 0, 0
## 
## Multimodel inference on "vf.score" based on AICc
## 
## AICc table used to obtain model-averaged estimate:
## 
##                                K  AICc Delta_AICc AICcWt Estimate   SE
## meancog~vf.score + (~ Bird.ID) 4 -9.29          0      1     0.02 0.01
## 
## Model-averaged estimate: 0.02 
## Unconditional SE: 0.01 
## 95% Unconditional confidence interval: -0.01, 0.04

jackknifed confidence intervals leaving one 10 test segment at the time

jackknifed confidence intervals removing one 10 test segment at the time

STATISTICAL ANALYSIS

discriminant analysis for sexing (based on DNA sexing)

nF nvars vars LDAFem.corr.clas LDAMal.corr.clas QDAFem.corr.clas
3 10 3 Weight/Total.culmen/Central.rectriz 0.0000000 0.9363057 1
14 10 3 Weight/Flattened.wing.length/Central.rectriz 0.4000000 0.9473684 1
86 10 4 Weight/Total.culmen/Mean.tarsus.length/Central.rectriz 0.0000000 0.9363057 1
91 10 4 Weight/Total.culmen/Flattened.wing.length/Central.rectriz 0.4000000 0.9473684 1
96 10 4 Weight/Total.culmen/Central.rectriz/External.rectriz 0.0000000 0.9358974 1
211 10 5 Weight/Total.culmen/Mean.tarsus.length/Flattened.wing.length/Central.rectriz 0.4000000 0.9473684 1
217 10 5 Weight/Total.culmen/Mean.tarsus.length/Central.rectriz/Mandible.color.value 0.0000000 0.9358974 1
25 9 3 Weight/External.rectriz/Curvature 0.4000000 0.9536424 1
42 9 3 Total.culmen/Central.rectriz/bt 0.0000000 0.9423077 1
61 9 3 Mean.tarsus.length/External.rectriz/Curvature 0.3333333 0.9477124 1
QDAMal.corr.clas GDAFem.corr.clas GDAMal.corr.clas ldaER qdaER gdaER
3 0.9423077 0.0943396 0.9519231 0.1146497 0.1146497 0.3694268
14 0.9607843 0.2093023 0.9912281 0.1082803 0.1146497 0.2165605
86 0.9423077 0.0925926 0.9514563 0.1146497 0.1082803 0.3757962
91 0.9607843 0.2093023 0.9912281 0.1146497 0.1019108 0.2802548
96 0.9423077 0.1590909 0.9734513 0.1082803 0.1337580 0.3057325
211 0.9607843 0.2093023 0.9912281 0.1210191 0.1082803 0.2738854
217 0.9483871 0.2000000 0.9829060 0.1337580 0.1082803 0.2356688
25 0.9545455 0.2058824 0.9836066 0.1282051 0.1025641 0.2500000
42 0.9483871 0.0645161 0.9468085 0.1025641 0.1025641 0.4679487
61 0.9607843 0.1764706 0.9754098 0.1153846 0.1153846 0.3141026

Factor analysis for condition

## Importance of components:
##                           PC1    PC2    PC3    PC4
## Standard deviation     1.1945 1.0539 0.9321 0.7705
## Proportion of Variance 0.3567 0.2777 0.2172 0.1484
## Cumulative Proportion  0.3567 0.6344 0.8516 1.0000
## 
## Call:
## factanal(x = log(cc10[, grep("Weight|Total.culmen|wing|Parasites|Mandible|bt",     names(cc10))] + 1), factors = 1, scores = "Bartlett", rotation = "varimax")
## 
## Uniquenesses:
##                    bt             Parasites                Weight 
##                  0.51                  1.00                  1.00 
##          Total.culmen Flattened.wing.length  Mandible.color.value 
##                  0.69                  0.69                  0.92 
## 
## Loadings:
## [1]  0.70  0.56  0.56                  
## 
##                Factor1
## SS loadings        1.2
## Proportion Var     0.2
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 8.52 on 9 degrees of freedom.
## The p-value is 0.483
## 
## Loadings:
##                       Factor1
## bt                     0.697 
## Parasites                    
## Weight                       
## Total.culmen           0.559 
## Flattened.wing.length  0.560 
## Mandible.color.value   0.287 
## 
##                Factor1
## SS loadings      1.196
## Proportion Var   0.199

model selection

## Importance of components:
##                           PC1    PC2    PC3    PC4
## Standard deviation     1.3159 1.0812 0.8259 0.6460
## Proportion of Variance 0.4329 0.2922 0.1705 0.1043
## Cumulative Proportion  0.4329 0.7251 0.8957 1.0000
## 
## Call:
## factanal(x = log(cc10[, grep("Weight|Total.culmen|wing|Parasites|Mandible|bt",     names(cc10))] + 1), factors = 1, scores = "Bartlett", rotation = "varimax")
## 
## Uniquenesses:
##                    bt             Parasites                Weight 
##                  0.51                  1.00                  1.00 
##          Total.culmen Flattened.wing.length  Mandible.color.value 
##                  0.69                  0.69                  0.92 
## 
## Loadings:
## [1]  0.70  0.56  0.56                  
## 
##                Factor1
## SS loadings        1.2
## Proportion Var     0.2
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 8.52 on 9 degrees of freedom.
## The p-value is 0.483
##             condition  cog.score     upmax2
## condition  1.00000000 -0.3085422 0.01464896
## cog.score -0.30854224  1.0000000 0.11572615
## upmax2     0.01464896  0.1157261 1.00000000
## 
##  Pearson's product-moment correlation
## 
## data:  cc$condition and cc$cog.score
## t = -1.5214, df = 22, p-value = 0.1424
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.6331358  0.1083389
## sample estimates:
##        cor 
## -0.3085422
## [1] 0.0003231572
## [1] 8.258265e-06
## [1] 1.960477e-06
## [1] 0.0001382611
## 
## Confidence set for the best model
## 
## Method:   raw sum of model probabilities
## 
## 95% confidence set:
##                                                             K  AICc
## terr~condition + cog.score + (1 | lek) + (1 | age)          5 22.30
## terr~upmax2 + condition + cog.score + (1 | lek) + (1 | age) 6 25.67
##                                                             Delta_AICc
## terr~condition + cog.score + (1 | lek) + (1 | age)                0.00
## terr~upmax2 + condition + cog.score + (1 | lek) + (1 | age)       3.37
##                                                             AICcWt
## terr~condition + cog.score + (1 | lek) + (1 | age)            0.84
## terr~upmax2 + condition + cog.score + (1 | lek) + (1 | age)   0.15
## 
## Model probabilities sum to 0.99
## [[1]]
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: terr ~ upmax2 + condition + cog.score + (1 | lek) + (1 | age)
##    Data: cc
## Control: 
## glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##     20.4     27.2     -4.2      8.4       17 
## 
## Scaled residuals: 
##       Min        1Q    Median        3Q       Max 
## -0.045232 -0.000024  0.000000  0.000000  0.036919 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  lek    (Intercept) 14115    118.8   
##  age    (Intercept) 19015    137.9   
## Number of obs: 23, groups:  lek, 3; age, 2
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    4.969     21.769   0.228  0.81943   
## upmax2         4.527      8.209   0.551  0.58129   
## condition     19.914      7.167   2.779  0.00546 **
## cog.score     32.356      9.954   3.250  0.00115 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) upmax2 condtn
## upmax2    -0.417              
## condition  0.175 -0.342       
## cog.score  0.505 -0.101  0.755
## 
## [[2]]
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: terr ~ condition + cog.score + (1 | lek) + (1 | age)
##    Data: cc
## Control: 
## glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+06))
## 
##      AIC      BIC   logLik deviance df.resid 
##     18.8     24.4     -4.4      8.8       18 
## 
## Scaled residuals: 
##       Min        1Q    Median        3Q       Max 
## -0.038791 -0.000001  0.000000  0.000000  0.038044 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  lek    (Intercept) 19175    138.5   
##  age    (Intercept) 25339    159.2   
## Number of obs: 23, groups:  lek, 3; age, 2
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -0.1526    25.6366  -0.006 0.995250    
## condition    28.3821     9.5566   2.970 0.002979 ** 
## cog.score    38.9752    11.1476   3.496 0.000472 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) condtn
## condition -0.260       
## cog.score  0.112  0.770
##       param        ES        SE   lower.CI upper.CI
## 1 cog.score 37.941063 11.229894  15.930876 59.95125
## 2    upmax2  4.527077  8.208689 -11.561657 20.61581
## 3 condition 27.059099  9.723060   8.002251 46.11595
## [1] 23
## geom_path: Each group consists of only one observation. Do you need to
## adjust the group aesthetic?
## geom_path: Each group consists of only one observation. Do you need to
## adjust the group aesthetic?
## geom_path: Each group consists of only one observation. Do you need to
## adjust the group aesthetic?
## geom_path: Each group consists of only one observation. Do you need to
## adjust the group aesthetic?
## geom_path: Each group consists of only one observation. Do you need to
## adjust the group aesthetic?
## geom_path: Each group consists of only one observation. Do you need to
## adjust the group aesthetic?
## geom_path: Each group consists of only one observation. Do you need to
## adjust the group aesthetic?
## geom_path: Each group consists of only one observation. Do you need to
## adjust the group aesthetic?
## geom_path: Each group consists of only one observation. Do you need to
## adjust the group aesthetic?

## geom_path: Each group consists of only one observation. Do you need to
## adjust the group aesthetic?
## geom_path: Each group consists of only one observation. Do you need to
## adjust the group aesthetic?
## geom_path: Each group consists of only one observation. Do you need to
## adjust the group aesthetic?

ideas

talvez mejor usar actividad como variable respuesta en analisis aparte?

prob de ser territorial el ano siguiente es relacionada a condicion o a cognicion?