Survival by STS (high, low, none)

## Call: survfit(formula = Surv(time2death, death) ~ sts.order, data = dat)
## 
##                 n events median 0.95LCL 0.95UCL
## sts.order=high 48     30  0.567    0.40    1.16
## sts.order=low  19      8  2.256    1.86      NA
## sts.order=none 61     44  1.122    0.49    3.47

## Call: survfit(formula = Surv(time2death, death) ~ sts.order, data = dat)
## 
##                 sts.order=high 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     48       0    1.000  0.0000       1.0000        1.000
##   0.5     23      18    0.592  0.0747       0.4624        0.758
##   1.0     12       7    0.404  0.0784       0.2762        0.591
##   2.0      4       3    0.299  0.0782       0.1794        0.499
##   3.0      2       1    0.200  0.0967       0.0772        0.516
##   4.0      1       0    0.200  0.0967       0.0772        0.516
## 
##                 sts.order=low 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     19       0    1.000  0.0000       1.0000        1.000
##   0.5     13       3    0.812  0.0976       0.6421        1.000
##   1.0     10       1    0.750  0.1083       0.5652        0.995
##   2.0      5       1    0.643  0.1358       0.4249        0.973
##   3.0      2       2    0.386  0.1627       0.1687        0.882
##   4.0      1       1    0.193  0.1588       0.0384        0.969
## 
##                 sts.order=none 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     61       0    1.000  0.0000        1.000        1.000
##   0.5     34      23    0.609  0.0639        0.495        0.748
##   1.0     28       6    0.501  0.0660        0.387        0.649
##   2.0     20       6    0.392  0.0650        0.283        0.543
##   3.0     13       2    0.351  0.0644        0.244        0.503
##   4.0     10       2    0.292  0.0656        0.188        0.454
##   5.0      9       0    0.292  0.0656        0.188        0.454
## Call:
## coxph(formula = Surv(time2death, death) ~ sts.order, data = dat)
## 
##   n= 128, number of events= 82 
## 
##                  coef exp(coef) se(coef)      z Pr(>|z|)  
## sts.orderlow  -0.7917    0.4531   0.3997 -1.981   0.0476 *
## sts.ordernone -0.2855    0.7516   0.2519 -1.134   0.2569  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##               exp(coef) exp(-coef) lower .95 upper .95
## sts.orderlow     0.4531      2.207    0.2070    0.9917
## sts.ordernone    0.7516      1.330    0.4588    1.2313
## 
## Concordance= 0.557  (se = 0.033 )
## Rsquare= 0.035   (max possible= 0.994 )
## Likelihood ratio test= 4.54  on 2 df,   p=0.1034
## Wald test            = 4.14  on 2 df,   p=0.1259
## Score (logrank) test = 4.28  on 2 df,   p=0.1178

Survival by STS (yes, no)

## Call: survfit(formula = Surv(time2death, death) ~ trt, data = dat)
## 
##            n events median 0.95LCL 0.95UCL
## trt=TRUE  67     38   1.01   0.553    2.45
## trt=FALSE 61     44   1.12   0.490    3.47

## Call: survfit(formula = Surv(time2death, death) ~ trt, data = dat)
## 
##                 trt=TRUE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     67       0    1.000  0.0000       1.0000        1.000
##   0.5     36      21    0.657  0.0614       0.5467        0.788
##   1.0     22       8    0.506  0.0668       0.3906        0.655
##   2.0      9       4    0.395  0.0731       0.2746        0.568
##   3.0      4       3    0.237  0.0841       0.1182        0.475
##   4.0      2       1    0.178  0.0813       0.0725        0.436
## 
##                 trt=FALSE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     61       0    1.000  0.0000        1.000        1.000
##   0.5     34      23    0.609  0.0639        0.495        0.748
##   1.0     28       6    0.501  0.0660        0.387        0.649
##   2.0     20       6    0.392  0.0650        0.283        0.543
##   3.0     13       2    0.351  0.0644        0.244        0.503
##   4.0     10       2    0.292  0.0656        0.188        0.454
##   5.0      9       0    0.292  0.0656        0.188        0.454
## Call:
## coxph(formula = Surv(time2death, death) ~ trt, data = dat)
## 
##   n= 128, number of events= 82 
## 
##              coef exp(coef) se(coef)      z Pr(>|z|)
## trtFALSE -0.05117   0.95011  0.23471 -0.218    0.827
## 
##          exp(coef) exp(-coef) lower .95 upper .95
## trtFALSE    0.9501      1.053    0.5998     1.505
## 
## Concordance= 0.47  (se = 0.031 )
## Rsquare= 0   (max possible= 0.994 )
## Likelihood ratio test= 0.05  on 1 df,   p=0.8274
## Wald test            = 0.05  on 1 df,   p=0.8274
## Score (logrank) test = 0.05  on 1 df,   p=0.8274

Death or Hospitalization by STS (high, low, none)

## Call: survfit(formula = Surv(time2death, death.or.hosp) ~ sts.order, 
##     data = dat)
## 
##                 n events median 0.95LCL 0.95UCL
## sts.order=high 48     36  0.553   0.356    1.05
## sts.order=low  19      9  2.152   1.292      NA
## sts.order=none 61     53  1.122   0.490    2.36

## Call: survfit(formula = Surv(time2death, death.or.hosp) ~ sts.order, 
##     data = dat)
## 
##                 sts.order=high 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     48       0   1.0000  0.0000       1.0000        1.000
##   0.5     23      20   0.5491  0.0753       0.4197        0.718
##   1.0     12       8   0.3479  0.0747       0.2285        0.530
##   2.0      4       5   0.1841  0.0673       0.0899        0.377
##   3.0      2       1   0.1227  0.0673       0.0419        0.359
##   4.0      1       1   0.0614  0.0549       0.0106        0.354
## 
##                 sts.order=low 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     19       0    1.000  0.0000       1.0000        1.000
##   0.5     13       3    0.812  0.0976       0.6421        1.000
##   1.0     10       1    0.750  0.1083       0.5652        0.995
##   2.0      5       2    0.571  0.1382       0.3557        0.918
##   3.0      2       2    0.343  0.1502       0.1453        0.809
##   4.0      1       1    0.171  0.1426       0.0336        0.875
## 
##                 sts.order=none 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     61       0    1.000  0.0000       1.0000        1.000
##   0.5     34      23    0.609  0.0639       0.4953        0.748
##   1.0     28       6    0.501  0.0660       0.3872        0.649
##   2.0     20       7    0.375  0.0644       0.2679        0.525
##   3.0     13       7    0.244  0.0579       0.1531        0.388
##   4.0     10       3    0.188  0.0529       0.1079        0.326
##   5.0      9       1    0.169  0.0508       0.0936        0.304
## Call:
## coxph(formula = Surv(time2death, death.or.hosp) ~ sts.order, 
##     data = dat)
## 
##   n= 128, number of events= 98 
## 
##                  coef exp(coef) se(coef)      z Pr(>|z|)  
## sts.orderlow  -0.9055    0.4043   0.3746 -2.417   0.0156 *
## sts.ordernone -0.4227    0.6553   0.2326 -1.817   0.0692 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##               exp(coef) exp(-coef) lower .95 upper .95
## sts.orderlow     0.4043      2.473    0.1940    0.8426
## sts.ordernone    0.6553      1.526    0.4154    1.0337
## 
## Concordance= 0.567  (se = 0.031 )
## Rsquare= 0.056   (max possible= 0.997 )
## Likelihood ratio test= 7.35  on 2 df,   p=0.02539
## Wald test            = 6.96  on 2 df,   p=0.03086
## Score (logrank) test = 7.22  on 2 df,   p=0.0271

Death or Hospitalization by STS (yes, no)

## Call: survfit(formula = Surv(time2death, death.or.hosp) ~ trt, data = dat)
## 
##            n events median 0.95LCL 0.95UCL
## trt=TRUE  67     45  0.893   0.529    1.74
## trt=FALSE 61     53  1.122   0.490    2.36

## Call: survfit(formula = Surv(time2death, death.or.hosp) ~ trt, data = dat)
## 
##                 trt=TRUE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     67       0   1.0000  0.0000       1.0000        1.000
##   0.5     36      23   0.6259  0.0622       0.5151        0.761
##   1.0     22       9   0.4622  0.0660       0.3494        0.611
##   2.0      9       7   0.2943  0.0666       0.1888        0.459
##   3.0      4       3   0.1766  0.0667       0.0842        0.370
##   4.0      2       2   0.0883  0.0553       0.0258        0.302
## 
##                 trt=FALSE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     61       0    1.000  0.0000       1.0000        1.000
##   0.5     34      23    0.609  0.0639       0.4953        0.748
##   1.0     28       6    0.501  0.0660       0.3872        0.649
##   2.0     20       7    0.375  0.0644       0.2679        0.525
##   3.0     13       7    0.244  0.0579       0.1531        0.388
##   4.0     10       3    0.188  0.0529       0.1079        0.326
##   5.0      9       1    0.169  0.0508       0.0936        0.304
## Call:
## coxph(formula = Surv(time2death, death.or.hosp) ~ trt, data = dat)
## 
##   n= 128, number of events= 98 
## 
##             coef exp(coef) se(coef)      z Pr(>|z|)
## trtFALSE -0.1534    0.8578   0.2171 -0.706     0.48
## 
##          exp(coef) exp(-coef) lower .95 upper .95
## trtFALSE    0.8578      1.166    0.5605     1.313
## 
## Concordance= 0.484  (se = 0.029 )
## Rsquare= 0.004   (max possible= 0.997 )
## Likelihood ratio test= 0.5  on 1 df,   p=0.48
## Wald test            = 0.5  on 1 df,   p=0.4799
## Score (logrank) test = 0.5  on 1 df,   p=0.4796

Number of hospitalization by STS (high, low, none)

## Analysis of Variance Table
## 
## Response: n.hospital
##            Df  Sum Sq Mean Sq F value Pr(>F)
## sts.order   2   3.546  1.7731  1.1385 0.3236
## Residuals 125 194.672  1.5574
## 
##  Kruskal-Wallis rank sum test
## 
## data:  n.hospital by sts.order
## Kruskal-Wallis chi-squared = 0.84187, df = 2, p-value = 0.6564

Number of hospitalization by STS (yes, no)

## Analysis of Variance Table
## 
## Response: n.hospital
##            Df  Sum Sq Mean Sq F value Pr(>F)
## trt         1   1.541  1.5415  0.9875 0.3222
## Residuals 126 196.677  1.5609
## 
##  Kruskal-Wallis rank sum test
## 
## data:  n.hospital by trt
## Kruskal-Wallis chi-squared = 0.63666, df = 1, p-value = 0.4249

Time dependent covariate

## Call: survfit(formula = Surv(tstart, tstop, death) ~ treatment, data = tdata)
## 
##                 treatment=0 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0      0       0    1.000  0.0000        1.000        1.000
##   0.5     35      23    0.634  0.0621        0.523        0.768
##   1.0     29       6    0.525  0.0654        0.411        0.670
##   2.0     20       6    0.415  0.0654        0.305        0.565
##   3.0     13       2    0.371  0.0655        0.262        0.524
##   4.0     10       2    0.309  0.0676        0.201        0.474
##   5.0      9       0    0.309  0.0676        0.201        0.474
## 
##                 treatment=1 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0      0       0    1.000  0.0000       1.0000        1.000
##   0.5     35      21    0.646  0.0625       0.5346        0.781
##   1.0     21       8    0.493  0.0674       0.3776        0.645
##   2.0      9       4    0.378  0.0742       0.2575        0.555
##   3.0      4       3    0.227  0.0819       0.1119        0.460
##   4.0      2       1    0.170  0.0786       0.0688        0.421
## Call:
## coxph(formula = Surv(tstart, tstop, death) ~ treatment, data = tdata)
## 
##   n= 155, number of events= 82 
## 
##             coef exp(coef) se(coef)     z Pr(>|z|)
## treatment 0.1669    1.1817   0.2348 0.711    0.477
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## treatment     1.182     0.8463    0.7459     1.872
## 
## Concordance= 0.488  (se = 0.031 )
## Rsquare= 0.003   (max possible= 0.986 )
## Likelihood ratio test= 0.51  on 1 df,   p=0.4772
## Wald test            = 0.51  on 1 df,   p=0.4771
## Score (logrank) test = 0.51  on 1 df,   p=0.4767

Survival by early/late treatment

## Call: survfit(formula = Surv(time2death, death) ~ group, data = dat1, 
##     start.time = 7/365.25)
## 
##              n events median 0.95LCL 0.95UCL
## group=early 40     22  1.049   0.529      NA
## group=late  27     16  0.969   0.400      NA

## Call: survfit(formula = Surv(time2death, death) ~ group, data = dat1, 
##     start.time = 7/365.25)
## 
##                 group=early 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.5     22      12    0.670  0.0786       0.5326        0.843
##   1.0     13       5    0.518  0.0853       0.3750        0.715
##   2.0      5       2    0.410  0.0981       0.2563        0.655
##   3.0      2       2    0.205  0.1136       0.0691        0.607
## 
##                 group=late 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.5     14       9    0.634  0.0984        0.468        0.859
##   1.0      9       3    0.489  0.1062        0.320        0.748
##   2.0      4       2    0.380  0.1068        0.219        0.660
##   3.0      2       1    0.285  0.1149        0.130        0.628
##   4.0      2       0    0.285  0.1149        0.130        0.628
## Call:
## coxph(formula = Surv(time2death - 7/365.25, death) ~ group, data = dat1)
## 
##   n= 67, number of events= 38 
## 
##               coef exp(coef) se(coef)      z Pr(>|z|)
## grouplate -0.01549   0.98463  0.33600 -0.046    0.963
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## grouplate    0.9846      1.016    0.5096     1.902
## 
## Concordance= 0.49  (se = 0.046 )
## Rsquare= 0   (max possible= 0.979 )
## Likelihood ratio test= 0  on 1 df,   p=0.9632
## Wald test            = 0  on 1 df,   p=0.9632
## Score (logrank) test = 0  on 1 df,   p=0.9632