Title: Highest membership coefficients

Name: Tammy L. Elliott

Date: May 22, 2016

R version 3.1


Angiosperm abundance-weighted membership coefficents

#Box plot of maximum values for only angiosperms; abundance-weighted
#dev.new(width=5.9, height=5.9)
boxplot(max.site.env, max.angio.abd, max.ph.angio.abd, col=c("grey15", "grey80", "grey50"),
cex.axis=1.15, cex.lab=1.3,yaxt="n", xaxt = "n",ylab="Highest membership coefficient across all clusters", frame=F)

axis(
  1, # puts the axis at the bottom

  at=1:3, # labels will be placed in the 3 categories
  labels=c("Site\nEnv", "Angio\nBD", "Angio\nPhBD"), # labels will be the 3 genera
  lwd=0, # width of the long axis line is zero, makes invisible
 # width of the etick lines also zero, makes them invisible

  cex.axis=1.15, # offset from the axis of the labels
  cex.lab=1.3,
  mgp=c(0,2,0) # middle zero controls distance of labels from axis
  )

  axis(
  2,
  #at=c(-4,-3,-2,-1,0,1,2,3,4),
  ylim=c(0,1),
  lwd=2, # width of the long axis line is zero, makes invisible
  lwd.ticks=0.1, # width of the etick lines also zero, makes them invisible
  tck=0.02,
  cex.axis=1.15, # offset from the axis of the labels
  cex.lab=1.3,
  mgp=c(0,0.75,0) # middle zero controls distance of labels from axis
  )

abline(h=0, col="grey20", lty=2)

Angiosperm presence-absence membership coefficents

#Box plot of maximum values for only angiosperms; presence-absence
#dev.new(width=5.9, height=5.9)
boxplot(max.site.env, max.angio.pa, max.ph.angio.pa, col=c("grey15", "grey80", "grey50"),
cex.axis=1.15, cex.lab=1.3,yaxt="n", xaxt = "n",ylab="Highest membership coefficient across all clusters", frame=F)

axis(
  1, # puts the axis at the bottom

  at=1:3, # labels will be placed in the 3 categories
  labels=c("Site\nEnv", "Angio\nBD", "Angio\nPhBD"), # labels will be the 3 genera
  lwd=0, # width of the long axis line is zero, makes invisible
 # width of the etick lines also zero, makes them invisible

  cex.axis=1.15, # offset from the axis of the labels
  cex.lab=1.3,
  mgp=c(0,2,0) # middle zero controls distance of labels from axis
  )

  axis(
  2,
  #at=c(-4,-3,-2,-1,0,1,2,3,4),
  ylim=c(0,1),
  lwd=2, # width of the long axis line is zero, makes invisible
  lwd.ticks=0.1, # width of the etick lines also zero, makes them invisible
  tck=0.02,
  cex.axis=1.15, # offset from the axis of the labels
  cex.lab=1.3,
  mgp=c(0,0.75,0) # middle zero controls distance of labels from axis
  )

abline(h=0, col="grey20", lty=2)

Anova comparing different methods for abundance-weighted analyses

ANOVA and Tukey test for abudance-weighted

#Compare with Tukey test: we can use this because there are a similar number of measurements per measurement type
(max.combined.aov <- aov(max.combined.one.col$Max.Support~ max.combined.one.col$Measurement))
## Call:
##    aov(formula = max.combined.one.col$Max.Support ~ max.combined.one.col$Measurement)
## 
## Terms:
##                 max.combined.one.col$Measurement Residuals
## Sum of Squares                          23.48745  18.68102
## Deg. of Freedom                                4       875
## 
## Residual standard error: 0.1461155
## Estimated effects may be unbalanced
summary(max.combined.aov)
##                                   Df Sum Sq Mean Sq F value Pr(>F)    
## max.combined.one.col$Measurement   4  23.49   5.872     275 <2e-16 ***
## Residuals                        875  18.68   0.021                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(posthoc.max.combined <- TukeyHSD(x=max.combined.aov, 'max.combined.one.col$Measurement', conf.level=0.95))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = max.combined.one.col$Max.Support ~ max.combined.one.col$Measurement)
## 
## $`max.combined.one.col$Measurement`
##                             diff         lwr          upr     p adj
## Angio.PhBD-Angio.BD   0.35784375  0.31526725  0.400420236 0.0000000
## Site Env.-Angio.BD    0.30342661  0.26085011  0.346003096 0.0000000
## Vasc.BD-Angio.BD     -0.03611172 -0.07868821  0.006464771 0.1399522
## Vasc.PhBD-Angio.BD    0.26659231  0.22401581  0.309168797 0.0000000
## Site Env.-Angio.PhBD -0.05441714 -0.09699363 -0.011840649 0.0045450
## Vasc.BD-Angio.PhBD   -0.39395547 -0.43653196 -0.351378974 0.0000000
## Vasc.PhBD-Angio.PhBD -0.09125144 -0.13382793 -0.048674948 0.0000001
## Vasc.BD-Site Env.    -0.33953833 -0.38211482 -0.296961834 0.0000000
## Vasc.PhBD-Site Env.  -0.03683430 -0.07941079  0.005742192 0.1260462
## Vasc.PhBD-Vasc.BD     0.30270403  0.26012753  0.345280517 0.0000000
summary(posthoc.max.combined)
##                                  Length Class  Mode   
## max.combined.one.col$Measurement 40     -none- numeric

Examine for only angiosperms

ANOVA and Tukey test for angiosperms

#Compare with Tukey test: we can use this because there are a similar number of measurements per measurement type
(max.combined.angio.aov <- aov(max.combined.angio.one.col$Max.Support~ max.combined.angio.one.col$Measurement))
## Call:
##    aov(formula = max.combined.angio.one.col$Max.Support ~ max.combined.angio.one.col$Measurement)
## 
## Terms:
##                 max.combined.angio.one.col$Measurement Residuals
## Sum of Squares                                13.08742  12.67403
## Deg. of Freedom                                      2       525
## 
## Residual standard error: 0.1553738
## Estimated effects may be unbalanced
summary(max.combined.angio.aov)
##                                         Df Sum Sq Mean Sq F value Pr(>F)
## max.combined.angio.one.col$Measurement   2  13.09   6.544   271.1 <2e-16
## Residuals                              525  12.67   0.024               
##                                           
## max.combined.angio.one.col$Measurement ***
## Residuals                                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(posthoc.max.combined.angio <- TukeyHSD(x=max.combined.angio.aov, 'max.combined.angio.one.col$Measurement', conf.level=0.95))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = max.combined.angio.one.col$Max.Support ~ max.combined.angio.one.col$Measurement)
## 
## $`max.combined.angio.one.col$Measurement`
##                             diff         lwr         upr     p adj
## Angio.PhBD-Angio.BD   0.35784375  0.31891467  0.39677282 0.0000000
## Site Env.-Angio.BD    0.30342661  0.26449753  0.34235568 0.0000000
## Site Env.-Angio.PhBD -0.05441714 -0.09334621 -0.01548807 0.0031126
summary(posthoc.max.combined.angio)
##                                        Length Class  Mode   
## max.combined.angio.one.col$Measurement 12     -none- numeric

Anova comparing different methods for presence-absence

ANOVA and Tukey test for presence-absence

#Compare with Tukey test: we can use this because there are a similar number of measurements per measurement type
(max.combined.aov.pa <- aov(max.combined.one.col.pa$Max.Support~ max.combined.one.col.pa$Measurement))
## Call:
##    aov(formula = max.combined.one.col.pa$Max.Support ~ max.combined.one.col.pa$Measurement)
## 
## Terms:
##                 max.combined.one.col.pa$Measurement Residuals
## Sum of Squares                             13.34753  16.59740
## Deg. of Freedom                                   4       875
## 
## Residual standard error: 0.137726
## Estimated effects may be unbalanced
summary(max.combined.aov.pa)
##                                      Df Sum Sq Mean Sq F value Pr(>F)    
## max.combined.one.col.pa$Measurement   4  13.35   3.337   175.9 <2e-16 ***
## Residuals                           875  16.60   0.019                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(posthoc.max.combined.pa <- TukeyHSD(x=max.combined.aov.pa, 'max.combined.one.col.pa$Measurement', conf.level=0.95))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = max.combined.one.col.pa$Max.Support ~ max.combined.one.col.pa$Measurement)
## 
## $`max.combined.one.col.pa$Measurement`
##                                       diff          lwr          upr
## max.ph.angio.pa-max.angio.pa    0.29078930  0.250657412  0.330921197
## max.ph.vasc.pa-max.angio.pa     0.06876294  0.028631047  0.108894832
## max.site.env-max.angio.pa       0.27386658  0.233734686  0.313998471
## max.vasc.pa-max.angio.pa        0.03663049 -0.003501399  0.076762385
## max.ph.vasc.pa-max.ph.angio.pa -0.22202636 -0.262158257 -0.181894472
## max.site.env-max.ph.angio.pa   -0.01692273 -0.057054619  0.023209166
## max.vasc.pa-max.ph.angio.pa    -0.25415881 -0.294290704 -0.214026919
## max.site.env-max.ph.vasc.pa     0.20510364  0.164971746  0.245235531
## max.vasc.pa-max.ph.vasc.pa     -0.03213245 -0.072264339  0.007999446
## max.vasc.pa-max.site.env       -0.23723609 -0.277367977 -0.197104193
##                                    p adj
## max.ph.angio.pa-max.angio.pa   0.0000000
## max.ph.vasc.pa-max.angio.pa    0.0000321
## max.site.env-max.angio.pa      0.0000000
## max.vasc.pa-max.angio.pa       0.0926534
## max.ph.vasc.pa-max.ph.angio.pa 0.0000000
## max.site.env-max.ph.angio.pa   0.7782440
## max.vasc.pa-max.ph.angio.pa    0.0000000
## max.site.env-max.ph.vasc.pa    0.0000000
## max.vasc.pa-max.ph.vasc.pa     0.1849082
## max.vasc.pa-max.site.env       0.0000000
summary(posthoc.max.combined.pa)
##                                     Length Class  Mode   
## max.combined.one.col.pa$Measurement 40     -none- numeric

ANOVA and Tukey test for angiosperms - presence-absence

#Compare with Tukey test: we can use this because there are a similar number of measurements per measurement type
(max.combined.angio.aov.pa <- aov(max.combined.angio.one.col.pa$Max.Support~ max.combined.angio.one.col.pa$Measurement))
## Call:
##    aov(formula = max.combined.angio.one.col.pa$Max.Support ~ max.combined.angio.one.col.pa$Measurement)
## 
## Terms:
##                 max.combined.angio.one.col.pa$Measurement Residuals
## Sum of Squares                                   9.377732 10.741637
## Deg. of Freedom                                         2       525
## 
## Residual standard error: 0.1430394
## Estimated effects may be unbalanced
summary(max.combined.angio.aov.pa)
##                                            Df Sum Sq Mean Sq F value
## max.combined.angio.one.col.pa$Measurement   2  9.378   4.689   229.2
## Residuals                                 525 10.742   0.020        
##                                           Pr(>F)    
## max.combined.angio.one.col.pa$Measurement <2e-16 ***
## Residuals                                           
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(posthoc.max.combined.angio.pa <- TukeyHSD(x=max.combined.angio.aov.pa, 'max.combined.angio.one.col.pa$Measurement', conf.level=0.95))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = max.combined.angio.one.col.pa$Max.Support ~ max.combined.angio.one.col.pa$Measurement)
## 
## $`max.combined.angio.one.col.pa$Measurement`
##                             diff        lwr        upr     p adj
## Angio.PhBD-Angio.BD   0.29078930  0.2549506 0.32662797 0.0000000
## Site Env.-Angio.BD    0.27386658  0.2380279 0.30970525 0.0000000
## Site Env.-Angio.PhBD -0.01692273 -0.0527614 0.01891594 0.5084094
summary(posthoc.max.combined.angio.pa)
##                                           Length Class  Mode   
## max.combined.angio.one.col.pa$Measurement 12     -none- numeric